Chapter 2: Linear Functions and Equations

2.1: Equations of Lines

1. Find slope: $m=\frac{-2-2}{3-1}=\frac{-4}{2}=-2$. Using $\left(x_{1}, y_{1}\right)=(1,2)$ and point-slope form $y=m\left(x-x_{1}\right)+y_{1}$, we get $y=-2(x-1)+2$. See Figure 1 .
2. Find slope: $m=\frac{0-3}{1-(-2)}=\frac{-3}{3}=-1$. Using $\left(x_{1}, y_{1}\right)=(-2,3)$ and point-slope form $y=m\left(x-x_{1}\right)+y_{1}$, we get $y=-(x+2)+3$. See Figure 2 .

Figure 1

Figure 2

Figure 3
3. Find slope: $m=\frac{2-(-1)}{1-(-3)}=\frac{3}{4}$. Using $\left(x_{1}, y_{1}\right)=(-3,-1)$ and point-slope form $y=m\left(x-x_{1}\right)+y_{1}$, we get $y=\frac{3}{4}(x+3)-1$. See Figure 3 .
4. Find slope: $m=\frac{(-3)-2}{(-2)-(-1)}=\frac{-5}{-1}=5$. Using $\left(x_{1}, y_{1}\right)=(-1,2)$ and point-slope form $y=m\left(x-x_{1}\right)+y_{1}$, we get $y=5(x+1)+2$. See Figure 4.

Figure 4
5. The point-slope form is given by $y=m\left(x-x_{1}\right)+y_{1}$. Thus, $m=-2.4$ and $\left(x_{1}, y_{1}\right)=(4,5) \Rightarrow$ $y=-2.4(x-4)+5 \Rightarrow y=-2.4 x+9.6+5 \Rightarrow y=-2.4 x+14.6$ and $f(x)=-2.4 x-14.6$.
6. The point-slope form is given by $y=m\left(x-x_{1}\right)+y_{1}$. Thus, $m=1.7$ and $\left(x_{1}, y_{1}\right)=(-8,10) \Rightarrow$ $y=1.7(x+8)+10 \Rightarrow y=1.7 x+13.6+10 \Rightarrow y=1.7 x+23.6$ and $f(x)=1.7 x+23.6$.
7. First find the slope between the points $(1,-2)$ and $(-9,3): m=\frac{3-(-2)}{-9-1}=-\frac{1}{2}$.

$$
y=-\frac{1}{2}(x-1)-2 \Rightarrow y=-\frac{1}{2} x+\frac{1}{2}-2 \Rightarrow y=-\frac{1}{2} x-\frac{3}{2} \text { and } f(x)=-\frac{1}{2} x-\frac{3}{2}
$$

8. $m=\frac{-12-10}{5-(-6)}=-\frac{22}{11}=-2$; thus, $y=-2(x+6)+10 \Rightarrow y=-2 x-12+10 \Rightarrow$ $y=-2 x-2$ and $f(x)=-2 x-2$.
9. $(4,0),(0,-3) ; m=\frac{-3-0}{0-4}=\frac{3}{4}$. Thus, $y=\frac{3}{4}(x-4)+0$ or $y=\frac{3}{4} x-3$ and $f(x)=\frac{3}{4} x-3$.
10. $(-2,0),(0,5) ; m=\frac{5-0}{0-(-2)}=\frac{5}{2}$. Thus, $y=\frac{5}{2}(x+2)+0$ or $y=\frac{5}{2} x+5$ and $f(x)=\frac{5}{2} x+5$.
11. Using the points $(0,-1)$ and $(3,1)$, we get $m=\frac{1-(-1)}{3-0}=\frac{2}{3}$ and $b=-1 ; y=m x+b \Rightarrow y=\frac{2}{3} x-1$.
12. Using the points $(0,50)$ and $(100,0)$,
we get $m=\frac{0-50}{100-0}=\frac{-50}{100}=-\frac{1}{2}$ and $b=50 ; y=m x+b \Rightarrow y=-\frac{1}{2} x+50$.
13. Using the points $(-2,1.8)$ and $(1,0)$, we get $m=\frac{0-1.8}{1-(-2)}=\frac{-1.8}{3}=-\frac{18}{30}=-\frac{3}{5}$; to find b, we use $(1,0)$ in $y=m x+b$ and solve for $b: 0=-\frac{3}{5}(1)+b \Rightarrow b=\frac{3}{5} ; y=-\frac{3}{5} x+\frac{3}{5}$.
14. Using the points $(-4,-2)$ and $(3,1)$, we get $m=\frac{1-(-2)}{3-(-4)}=\frac{3}{7}$; to find b, we use $(3,1)$ in $y=m x+b$ and solve for $b: 1=\frac{3}{7}(3)+b \Rightarrow b=-\frac{2}{7} ; y=\frac{3}{7} x-\frac{2}{7}$.
15. c
16. f
17. b
18. a
19. e
20. d
21. $m=\frac{2-(-4)}{1-(-1)}=3 ; y=3(x+1)-4=3 x+3-4=3 x-1$
22. $m=\frac{-3-6}{2-(-1)}=-3 ; y=-3(x+1)+6=-3 x-3+6=-3 x+3$
23. $m=\frac{-3-5}{1-4}=\frac{8}{3} ; y=\frac{8}{3}(x-4)+5=\frac{8}{3} x-\frac{32}{3}+5=\frac{8}{3} x-\frac{17}{3}$
24. $m=\frac{-3-(-2)}{-2-8}=-\frac{1}{2} ; y=-\frac{1}{2}(x-8)-2=-\frac{1}{2} x+4-2=-\frac{1}{2} x+2$
25. $b=5$ and $m=-7.8 \Rightarrow y=-7.8 x+5$.
26. $b=-155$ and $m=5.6 \Rightarrow y=5.6 x-155$.
27. The line passes through the points $(0,45)$ and $(90,0)$.

$$
m=\frac{0-45}{90-0}=-\frac{1}{2} ; b=45 \text { and } m=-\frac{1}{2} \Rightarrow y=-\frac{1}{2} x+45
$$

28. The line passes through the points $(-6,0)$ and $(0,-8)$.

$$
m=\frac{-8-0}{0-(-6)}=-\frac{4}{3} ; b=-8 \text { and } m=-\frac{4}{3} \Rightarrow y=-\frac{4}{3} x-8
$$

29. $m=-3$ and $b=5 \Rightarrow y=-3 x+5$
30. Using the point-slope form with

$$
m=\frac{1}{3} \text { and }\left(x_{1}, y_{1}\right)=\left(\frac{1}{2},-2\right), \text { we get } y=\frac{1}{3}\left(x-\frac{1}{2}\right)-2=\frac{1}{3} x-\frac{1}{6}-2=\frac{1}{3} x-\frac{13}{6} .
$$

31. $m=\frac{0-(-6)}{4-0}=\frac{6}{4}=\frac{3}{2}$ and $b=-6 ; y=m x+b \Rightarrow y=\frac{3}{2} x-6$
32. $m=\frac{\frac{7}{4}-\left(-\frac{1}{4}\right)}{\frac{5}{4}-\frac{3}{4}}=\frac{\frac{8}{4}}{\frac{2}{4}}=4$; using the point-slope form with $m=4$ and $\left(\frac{3}{4},-\frac{1}{4}\right)$, we get $y=4\left(x-\frac{3}{4}\right)-\frac{1}{4}=4 x-3-\frac{1}{4}=4 x-\frac{13}{4}$.
33. $m=\frac{\frac{2}{3}-\frac{3}{4}}{\frac{1}{5}-\frac{1}{2}}=\frac{-\frac{1}{12}}{-\frac{3}{10}}=\frac{5}{18}$; using the point-slope form with $m=\frac{5}{18}$ and $\left(\frac{1}{2}, \frac{3}{4}\right)$, we get $y=\frac{5}{18}\left(x-\frac{1}{2}\right)+\frac{3}{4} \Rightarrow y=\frac{5}{18} x-\frac{5}{36}+\frac{3}{4} \Rightarrow y=\frac{5}{18} x+\frac{11}{18}$.
34. $m=\frac{-\frac{7}{6}-\frac{5}{3}}{\frac{5}{6}-\left(-\frac{7}{3}\right)}=\frac{-\frac{17}{6}}{\frac{19}{6}}=-\frac{17}{19}$; using the point-slope form with $m=-\frac{17}{19}$ and $\left(-\frac{7}{3}, \frac{5}{3}\right)$, we get $y=-\frac{17}{19}\left(x+\frac{7}{3}\right)+\frac{5}{3} \Rightarrow y=-\frac{17}{19} x-\frac{119}{57}+\frac{5}{3} \Rightarrow y=-\frac{17}{19} x-\frac{24}{57} \Rightarrow y=-\frac{17}{19} x-\frac{8}{19}$.
35. The line has a slope of 4 and passes through the point $(-4,-7) ; y=4(x+4)-7 \Rightarrow y=4 x+9$.
36. The line has a slope of $-\frac{3}{4}$ and passes through the point $(1,3)$; $y=-\frac{3}{4}(x-1)+3 \Rightarrow y=-\frac{3}{4} x+\frac{3}{4}+3=-\frac{3}{4} x+\frac{15}{4}$
37. The slope of the perpendicular line is equal to $\frac{3}{2}$ and the line passes through the point $(1980,10)$; $y=\frac{3}{2}(x-1980)+10 \Rightarrow y=\frac{3}{2} x-2960$
38. The slope of the perpendicular lineis equal to $-\frac{1}{6}$ and the line passes through the point $(15,-7)$; $y=-\frac{1}{6}(x-15)-7 \Rightarrow y=-\frac{1}{6} x-\frac{27}{6}=-\frac{1}{6} x-\frac{9}{2}$
39. $y=\frac{2}{3} x+3 \Rightarrow m=\frac{2}{3}$; the parallel line has slope $\frac{2}{3}$; since it passes through $(0,-2.1)$, the y-intercept $=-2.1 ; y=m x+b \Rightarrow y=\frac{2}{3} x-2.1$.
40. $y=-4 x-\frac{1}{4} \Rightarrow m=-4$; the parallel line has slope -4 ; since it passes through $(2,-5)$, the equation is $y=-4(x-2)-5=-4 x+8-5=-4 x+3$.
41. $y=-2 x \Rightarrow m=-2$; the perpendicular line has slope $\frac{1}{2}$; since it passes through $(-2,5)$, the equation is $y=\frac{1}{2}(x+2)+5=\frac{1}{2} x+1+5=\frac{1}{2} x+6$.
42. $y=-\frac{6}{7} x+\frac{3}{7} \Rightarrow m=-\frac{6}{7}$; the perpendicular line has slope $\frac{7}{6}$; since it passes through $(3,8)$, the equation is $y=\frac{7}{6}(x-3)+8=\frac{7}{6} x-\frac{7}{2}+8=\frac{7}{6} x+\frac{9}{2}$.
43. $y=-x+4 \Rightarrow m=-1$; the perpendicular line has slope 1 ; since it passes through $(15,-5)$, the equation is $y=1(x-15)-5=x-15-5=x-20$.
44. $y=\frac{2}{3} x+2 \Rightarrow m=\frac{2}{3}$; the parallel line has slope $\frac{2}{3}$; since it passes through $(4,-9)$, the equation is $y=\frac{2}{3}(x-4)-9=\frac{2}{3} x-\frac{8}{3}-9=\frac{2}{3} x-\frac{35}{3}$.
45. $m=\frac{1-3}{-3-1}=\frac{-2}{-4}=\frac{1}{2}$; a line parallel to this line also has slope $m=\frac{1}{2}$. Using $\left(x_{1}, y_{1}\right)=(5,7), m=\frac{1}{2}$, and point-slope form $y=m\left(x-x_{1}\right)+y_{1}$, we get $y=\frac{1}{2}(x-5)+7 \Rightarrow$ $y=\frac{1}{2} x+\frac{9}{2}$.
46. $m=\frac{8-3}{2000-1980}=\frac{5}{20}=\frac{1}{4}$; a line parallel to this line also has slope $m=\frac{1}{4}$. Using $\left(x_{1}, y_{1}\right)=(1990,4), m=\frac{1}{4}$, and point-slope form $y=m\left(x-x_{1}\right)+y_{1}$, we get $y=\frac{1}{4}(x-1990)+4 \Rightarrow$ $y=\frac{1}{4} x-\frac{1990}{4}+4 \Rightarrow y=\frac{1}{4} x-\frac{987}{2}$.
47. $m=\frac{\frac{2}{3}-\frac{1}{2}}{-3-(-5)}=\frac{\frac{1}{6}}{2}=\frac{1}{12}$; a line perpendicular to this line has slope $m=-\frac{12}{1}=-12$. Using $\left(x_{1}, y_{1}\right)=(-2,4), m=-12$, and point-slope form $y=m\left(x-x_{1}\right)+y_{1}$, we get $y=-12(x+2)+4 \Rightarrow y=-12 x-24+4 \Rightarrow y=-12 x-20$.
48. $m=\frac{0-(-5)}{-4-(-3)}=\frac{5}{-1}=-5$. A line perpendicular to this line will have slope $m=\frac{1}{5}$. Using $\left(x_{1}, y_{1}\right)=\left(\frac{3}{4}, \frac{1}{4}\right), m=\frac{1}{5}$, and point-slope form $y=m\left(x-x_{1}\right)+y_{1}$, we get $y=\frac{1}{5}\left(x-\frac{3}{4}\right)+\frac{1}{4} \Rightarrow$ $y=\frac{1}{5} x-\frac{3}{20}+\frac{1}{4} \Rightarrow y=\frac{1}{5} x+\frac{2}{20} \Rightarrow y=\frac{1}{5} x+\frac{1}{10}$.
49. $x=-5$. It is not possible to write as a linear function since a vertical line does not represent a function.
50. $x=1.95$. It is not possible to write as a linear function since a vertical line does not represent a function.
51. $y=6$ and $f(x)=6$.
52. $y=10.7$ and $f(x)=10.7$.
53. Since the line $y=15$ is horizontal, the perpendicular line through $(4,-9)$ is vertical and has equation $x=4$. It is not possible to write as a linear function since a vertical line does not represent a function.
54. Since the line $x=15$ is vertical, the perpendicular line through $(1.6,-9.5)$ is horizontal and has equation $y=-9.5$.
55. The line through $(19,5.5)$ and parallel to $x=4.5$ is also vertical and has equation $x=19$. It is not possible to write as a linear function since a vertical line does not represent a function.
56. Since the line $y=-2.5$ is horizontal, the parallel line through $(1985,67)$ is also horizontal with equation $y=67$ and $f(x)=67$.
57. Let $4 x-5 y=20$.
x-intercept: Substitute $y=0$ and solve for $x .4 x-5(0)=20 \Rightarrow 4 x=20 \Rightarrow x=5 ; x$-intercept: 5 y-intercept: Substitute $x=0$ and solve for $y .4(0)-5 y=20 \Rightarrow-5 y=20 \Rightarrow y=-4 ; y$-intercept: -4 See Figure 57.
58. Let $-3 x-5 y=15$.
x-intercept: Substitute $y=0$ and solve for $x .-3 x-5(0)=15 \Rightarrow-3 x=15 \Rightarrow x=-5 ; x$-intercept: -5 y-intercept: Substitute $x=0$ and solve for y. $-3(0)-5 y=15 \Rightarrow-5 y=15 \Rightarrow y=-3 ; y$-intercept: -3 See Figure 58.

Figure 57

Figure 58

Figure 59
59. Let $x-y=7$.
x-intercept: Substitute $y=0$ and solve for $x . x-0=7 \Rightarrow x=7 ; x$-intercept: 7
y-intercept: Substitute $x=0$ and solve for $y .0-y=7 \Rightarrow-y=7 \Rightarrow y=-7 ; y$-intercept: -7
See Figure 59.
60. Let $15 x-y=30$.
x-intercept: Substitute $y=0$ and solve for $x .15 x-0=30 \Rightarrow 15 x=30 \Rightarrow x=2$; x-intercept: 2
y-intercept: Substitute $x=0$ and solve for $y .15(0)-y=30 \Rightarrow-y=30 \Rightarrow y=-30 ; y$-intercept: -30
See Figure 60.
61. Let $6 x-7 y=-42$.
x-intercept: Substitute $y=0$ and solve for $x .6 x-7(0)=-42 \Rightarrow 6 x=-42 \Rightarrow x=-7 ; x$-intercept: -7 y-intercept: Substitute $x=0$ and solve for $y .6(0)-7 y=-42 \Rightarrow-7 y=-42 \Rightarrow y=6 ; y$-intercept: 6 See Figure 61.

Figure 60

Figure 61

Figure 62
62. Let $5 x+2 y=-20$.
x-intercept: Substitute $y=0$ and solve for $x .5 x+2(0)=-20 \Rightarrow 5 x=-20 \Rightarrow x=-4 ; x$-intercept: -4 y-intercept: Substitute $x=0$ and solve for $y .5(0)+2 y=-20 \Rightarrow 2 y=-20 \Rightarrow y=-10 ; y$-intercept: -10 See Figure 62.
63. Let $y-3 x=7$.
x-intercept: Substitute $y=0$ and solve for $x .0-3 x=7 \Rightarrow-3 x=7 \Rightarrow x=-\frac{7}{3} ; x$-intercept: $-\frac{7}{3}$
y-intercept: Substitute $x=0$ and solve for $y . y-3(0)=7 \Rightarrow y-0=7 \Rightarrow y=7 ; y$-intercept: 7
See Figure 63.

Figure 63

Figure 64
64. Let $4 x-3 y=6$.
x-intercept: Substitute $y=0$ and solve for $x .4 x-3(0)=6 \Rightarrow 4 x=6 \Rightarrow x=\frac{3}{2} ; x$-intercept: $\frac{3}{2}$
y-intercept: Substitute $x=0$ and solve for $y .4(0)-3 y=6 \Rightarrow-3 y=6 \Rightarrow y=-2 ; y$-intercept: -2 See Figure 64.
65. Let $0.2 x+0.4 y=0.8$.
x-intercept: Substitute $y=0$ and solve for $x .0 .2 x+0.4(0)=0.8 \Rightarrow 0.2 x=0.8 \Rightarrow x=4 ; x$-intercept: 4 y-intercept: Substitute $x=0$ and solve for $y .0 .2(0)+0.4 y=0.8 \Rightarrow 0.4 y=0.8 \Rightarrow y=2 ; y$-intercept: 2 See Figure 65.

Figure 65

Figure 66
66. Let $\frac{2}{3} y-x=1$.
x-intercept: Substitute $y=0$ and solve for $x \cdot \frac{2}{3}(0)-x=1 \Rightarrow x=-1 ; x$-intercept: -1 y-intercept: Substitute $x=0$ and solve for $y . \frac{2}{3} y-0=1 \Rightarrow \frac{2}{3} y=1 \Rightarrow y=\frac{3}{2} ; y$-intercept: $\frac{3}{2}$ See Figure 66.
67. Let $y=8 x-5$.
x-intercept: Substitute $y=0$ and solve for $x .0=8 x-5 \Rightarrow 5=8 x \Rightarrow x=\frac{5}{8} ; x$-intercept: $\frac{5}{8}$ y-intercept: Substitute $x=0$ and solve for y. $y=8(0)-5 \Rightarrow y=-5 ; y$-intercept: -5

See Figure 67.
68. Let $y=-1.5 x+15$.
x-intercept: Substitute $y=0$ and solve for $x .0=-1.5 x+15 \Rightarrow 1.5 x=15 \Rightarrow x=10 ; y$-intercept: 10 y-intercept: Substitute $x=0$ and solve for $y . y=-1.5(0)+15 \Rightarrow y=15 ; y$-intercept: 15 See Figure 68.

Figure 67

Figure 68
69. Let $\frac{x}{5}+\frac{y}{7}=1$.
x-intercept: Substitute $y=0$ and solve for $x . \frac{x}{5}+\frac{0}{7}=1 \Rightarrow \frac{x}{5}=1 \Rightarrow x=5 ; x$-intercept: 5 y-intercept: Substitute $x=0$ and solve for $y . \frac{0}{5}+\frac{y}{7}=1 \Rightarrow \frac{y}{7}=1 \Rightarrow y=7 ; y$-intercept: 7 a and b represent the x - and y-intercepts, respectively.
70. Let $\frac{x}{2}+\frac{y}{3}=1$.
x-intercept: Substitute $y=0$ and solve for $x . \frac{x}{2}+\frac{0}{3}=1 \Rightarrow \frac{x}{2}=1 \Rightarrow x=2 ; x$-intercept: 2
y-intercept: Substitute $x=0$ and solve for $y . \frac{0}{2}+\frac{y}{3}=1 \Rightarrow \frac{y}{3}=1 \Rightarrow y=3 ; y$-intercept: 3
a and b represent the x - and y-intercepts, respectively.
71. Let $\frac{2 x}{3}+\frac{4 y}{5}=1$.
x-intercept: Substitute $y=0$ and solve for $x . \frac{2 x}{3}+\frac{4(0)}{5}=1 \Rightarrow \frac{2 x}{3}=1 \Rightarrow x=\frac{3}{2} ; x$-intercept: $\frac{3}{2}$ y-intercept: Substitute $x=0$ and solve for $y . \frac{2(0)}{3}+\frac{4 y}{5}=1 \Rightarrow \frac{4 y}{5}=1 \Rightarrow y=\frac{5}{4} ; y$-intercept: $\frac{5}{4}$ a and b represent the x - and y-intercepts, respectively.
72. Let $\frac{5 x}{6}-\frac{y}{2}=1$.
x-intercept: Substitute $y=0$ and solve for $x . \frac{5 x}{6}-\frac{0}{2}=1 \Rightarrow \frac{5 x}{6}=1 \Rightarrow x=\frac{6}{5} ; x$-intercept: $\frac{6}{5}$
y-intercept: Substitute $x=0$ and solve for $y . \frac{5(0)}{6}-\frac{y}{2}=1 \Rightarrow-\frac{y}{2}=1 \Rightarrow y=-2 ; y$-intercept: -2 a and b represent the x - and y-intercepts, respectively.
73. $\frac{x}{a}+\frac{y}{b}=1 ; x$-intercept: $5 \Rightarrow a=5, y$-intercept: $9 \Rightarrow b=9 ; \frac{x}{5}+\frac{y}{9}=1$
74. $\frac{x}{a}+\frac{y}{b}=1 ; x$-intercept: $\frac{2}{3} \Rightarrow a=\frac{2}{3}, y$-intercept: $-\frac{5}{4} \Rightarrow b=-\frac{5}{4} ; \frac{x}{\frac{2}{3}}+\frac{y}{-\frac{5}{4}}=1 \Rightarrow \frac{3 x}{2}-\frac{4 y}{5}=1$
75. (a) Since the point $(0,-3.2)$ is on the graph, the y-intercept is -3.2 . The data is exactly linear, so one can use any two points to determine the slope. Using the points $(0,-3.2)$ and $(1,-1.7), m=\frac{-1.7-(-3.2)}{1-0}=1.5$. The slope-intercept form of the line is $y=1.5 x-3.2$.
(b) When $x=-2.7, y=1.5(-2.7)-3.2=-7.25$. This calculation involves interpolation. When $x=6.3, y=1.5(6.3)-3.2=6.25$. This calculation involves extrapolation.
76. (a) Since the point $(0,6.8)$ is on the graph, the y-intercept is 6.8 . The data is exactly linear, so one can use any two points to determine the slope. Using the points $(0,6.8)$ and $(1,5.1), m=\frac{5.1-6.8}{1-0}=-1.7$. The slope-intercept form of the line is $y=-1.7 x+6.8$.
(b) When $x=-2.7, y=-1.7(-2.7)+6.8=11.39$. This calculation involves extrapolation.

When $x=6.3, y=-1.7(6.3)+6.8=-3.91$. This calculation involves extrapolation.
77. (a) Since the data is exactly linear, one can use any two points to determine the slope. Using the points
$(5,94.7)$ and $(23,56.9), m=\frac{56.9-94.7}{23-5}=-2.1$. The point-slope form of the line is $y=-2.1(x-5)+94.7$ and the slope-intercept form of the line is $y=-2.1 x+105.2$.
(b) When $x=-2.7, y=-2.1(-2.7)+105.2=110.87$. This calculation involves extrapolation.

When $x=6.3, y=-2.1(6.3)+105.2=91.97$. This calculation involves interpolation.
78. (a) Since the data is exactly linear, one can use any two points to determine the slope. Using the points $(-3,-0.9)$ and $(2,8.6), m=\frac{8.6-(-0.9)}{2-(-3)}=1.9$. The point-slope form of the line is $y=1.9(x-2)+8.6$ and the slope-intercept form of the line is $y=1.9 x+4.8$.
(b) When $x=-2.7, y=1.9(-2.7)+4.8=-0.33$. This calculation involves interpolation. When $x=6.3, y=1.9(6.3)+4.8=16.77$. This calculation involves extrapolation.
79. (a) Using the points $(2008,3)$ and $(2011,24), m=\frac{24-3}{2011-2008}=\frac{21}{3}=7$. The point slope form of the line is $f(x)=7 x-14053$. The function approximately models the given data.
(b) $f(2007)=7(2007-2008)+3=-7+3=-4 \Rightarrow-4 \%$
(c) The calculation involved extrapolation. The result was a negative so it is not possible. Numbers were decreasing but increased after 911.
80. (a) The slope between $(1998,43)$ and $(1999,26)$ is -17 , and the slope between $(1999,26)$ and $(2000,9)$ is -17 ; letting $m=-17, f(x)=-17(x-1998)+43$, or $f(x)=-17 x+34,009$ exactly models the data.
(b) $f(2003)=-17(2003)+34,009=-42$; this estimated value is not possible. Extrapolation.
81. (a) Find the slope: $m=\frac{37,000-25,000}{2010-2003}=\frac{12,000}{7}$. Using the first point $(2003,25000)$ for $\left(x_{1}, y_{1}\right)$ and $m=\frac{12,000}{7}$, we get $y=\frac{12,000}{7}(x-2003)+25,000$. The cost of attending a private college or university is increasing by $\frac{12,000}{7} \approx \$ 1714$ per year on average.
(b) $y=\frac{12,000}{7}(2007-2003)+25,000 \Rightarrow y=\frac{12,000}{7}(4)+25,000 \Rightarrow y \approx 6857+25,000 \Rightarrow$ $y \approx \$ 31,857$
82. (a) The average rate of change $=\frac{161-128}{4-1}=\frac{33}{3}=11 \Rightarrow$ the biker is traveling 11 mile per hour.
(b) Using $m=11$ and the point $(1,128)$, we get $y=11(x-1)+128=11 x-11+128 \Rightarrow$ $y=11 x+117$.
(c) Find the y-intercept in $y=11 x+117 \Rightarrow b=117$; the biker is initially 117 miles from the interstate highway.
(d) 1 hour and 15 minutes $=1.25$ hours; $y=11(1.25)+117=13.75+117=130.75$ the biker is 130.75 miles from the interstate highway after 1 hour and 15 minutes.
83. (a) Water is leaving the tank because the amount of water in the tank is decreasing. After 3 minutes there are approximately 70 gallons of water in the tank.
(b) The x-intercept is 10 . This means that after 10 minutes the tank is empty. The y-intercept is 100 . This means that initially there are 100 gallons of water in the tank.
(c) To determine the equation of the line, we can use 2 points. The points $(0,100)$ and $(10,0)$ lie on the line. The slope of this line is $m=\frac{0-100}{10-0}=-10$. This slope means the water is being drained at a rate of 10 gallons per minute. Since the y-intercept is 100 , the slope-intercept form of this line is given by $y=-10 x+100$.
(d) From the graph, when $y=50$ the x-value appears to be 5 . Symbolically, when $y=50$ then $-10 x+100=50 \Rightarrow-10 x=-50 \Rightarrow x=5$. The x-coordinate is 5.
84. (a) The annual fixed cost would be $350 \times 12=\$ 4200$. The variable cost of driving x miles is $0.29 x$. Thus, $f(x)=0.29 x+4200$.
(b) The y-intercept is 4200 , which represents the annual fixed costs. This means that even if the car is not driven, it will still cost $\$ 4200$ each year to own it.
85. (a) First calculate the slope: $m=\frac{15-9}{1999-2013}=\frac{6}{-14}=-\frac{3}{7}$, using the first point we have $y=-\frac{3}{7}(x-1999)+15$.
(b) The sales decreased, on average, by $\frac{3}{7} \approx \$ 0.43$ billion per year.
(c) $f(2008)=-\frac{3}{7}(2008-1999)+15 \approx 11.1 \Rightarrow \$ 11.1$ billion. The estimate is about $\$ 0.7$ billion higher than the true value of $\$ 10.4$ billion. The calculation involves interpolation.
86. (a) First calculate the slope: $m=\frac{2.3-1.4}{2007-1998}=\frac{0.9}{9}=0.1$, using the first point we have $y=0.1(x-1998)+1.4$.
(b) The sales increased, on average, by 0.1 million per year.
(c) $f(2004)=0.1(2004-1998)+1.4=2 \Rightarrow 2$ million. The estimate is the same as the true value of 2 million. The calculation involves interpolation.
87. (a) See Figure 87a.
(b) Using the points $(2006,160)$ and $(2010,425), m=\frac{425-160}{2010-2006}=\frac{265}{4}=66.25$. The point slope form of the line is $f(x)=66.25(x-2006)+160$.
(c) See Figure 87c.
(d) Bankruptcies increased, on average, by 66,250 per year.
(e) $f(2014)=66.25(2014-2006)+160=690$; The calculation involves extrapolation.
88. (a) See Figure 88a.
(b) Using the points $(1995,12,432)$ and $(2010,26,273), m=\frac{26,273-12,432}{2010-1995}=\frac{13841}{15} \approx 923$. The point slope form of the line is $f(x)=923(x-1995)+12,432$.
(c) See Figure 88c.
(d) Cost increased, on average, by $\$ 923$ per year.
(e) $f(2014)=923(2014-1995)+12,432=29,969$ or about 30,000 ; The calculation involves extrapolation.

Figure 87a

Figure 87c

Figure 88a

Figure 88c
89. (a) Using the points $(1970,2000)$ and $(2010,1590), m=\frac{1590-2000}{2010-1970}=\frac{-410}{40}=-10.25$. Since x represents the number of years after 1970, we have a y-intercept of 2000, and the function is $f(x)=-10.25 x+2000$.

