Exam
Name \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Determine if the function is even, odd, or neither.

1) $h(t)=\sqrt{t^{2}+3}$
2) \qquad
A) Even
B) Odd
C) Neither

Answer: A
Diff: $0 \quad$ Type: BI

Find a formula for the function graphed.
2)
2)

A) $f(x)= \begin{cases}1, & x<2 \\ 2-x, & x>2\end{cases}$
B) $f(x)= \begin{cases}1, & x<2 \\ x-2, & x \geq 2\end{cases}$
C) $f(x)= \begin{cases}1, & x<0 \\ 2-x, & x \geq 0\end{cases}$
D) $f(x)= \begin{cases}1, & x \leq 2 \\ 2-x, & x>2\end{cases}$

Answer: D
Diff: $0 \quad$ Type: BI

Assume that f is an even function, g is an odd function, and both f and g are defined on the entire real line. State whether the combination of functions (where defined) is even or odd.
3) $f \circ f$
3) \qquad
A) Even
B) Odd

Answer: A
Diff: $0 \quad$ Type: BI

Solve for the angle θ, where $0 \leq \theta \leq 2 \pi$
4) $\sin ^{2} \theta=\frac{1}{4}$
4) \qquad
A) $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
B) $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
C) $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
D) $\theta=0, \pi, 2 \pi$

Answer: A
Diff: 0 Type: BI
One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.
5) $\sin x=-\frac{\sqrt{5}}{3}, \quad x$ in $\left[-\frac{\pi}{2}, 0\right]$
5) \qquad
A) $\cos x=-\frac{2}{3}, \tan x=\frac{\sqrt{5}}{2}$
B) $\cos x=-\frac{2}{3}, \tan x=-\frac{\sqrt{5}}{2}$
C) $\cos x=\frac{2}{3}, \tan x=\frac{\sqrt{5}}{2}$
D) $\cos x=\frac{2}{3}, \tan x=-\frac{\sqrt{5}}{2}$

Answer: D
Diff: 0 Type: BI

Find the domain and range for the indicated function.
6) $f(x)=\sqrt{x+3}, \quad g(x)=\sqrt{x-3} ; \quad f \cdot g$
A) D: $x \geq 3$
$R: y \geq 0$
B) D: $x \geq 3$
R: $-\infty<y<\infty$
C) D: $x \geq 3$
R: $y>0$
D) D: $x>3$
R: $y \geq 0$

Answer: A
Diff: 0 Type: BI
Find the domain and range of the function.

$$
\text { 7) } g(z)=\frac{-3}{\sqrt{z+1}}
$$

7) \qquad
A) D: $[0, \infty)$, R: $(-\infty, \infty)$
B) D: $(-\infty,-1)$, $\mathrm{R}:(0, \infty)$
C) D: $[1, \infty)$, R: $(-\infty, \infty)$
D) $\mathrm{D}:(-1, \infty), \mathrm{R}:(-\infty, 0)$

Answer: D
Diff: 0 Type: BI

Solve the problem.

8) The accompanying figure shows the graph of $y=x^{2}$ shifted to a new position. Write the equation for the new graph.
9)

A) $y=(x+5)^{2}$
B) $y=x^{2}-5$
C) $y=(x-5)^{2}$
D) $y=x^{2}+5$

Answer: B
Diff: 0 Type: BI
Use the appropriate addition formula to find the exact value of the expression.
9) $\cos \left(\frac{\pi}{12}\right)$
A) $-\frac{\sqrt{6}+\sqrt{2}}{4}$
B) $\frac{\sqrt{6}-\sqrt{2}}{4}$
C) $\frac{\sqrt{2}-\sqrt{6}}{4}$
D) $\frac{\sqrt{6}+\sqrt{2}}{4}$

Answer: D

Diff: 0 Type: BI

Graph the function.

10) \qquad

A)

C)

Answer: C
Diff: $0 \quad$ Type: BI
11) $y=\frac{1}{x^{2}}+4$

11) \qquad

12)
D) D: $x \geq 5$
$R: y \geq 0$
A) D: $x \geq-5$
R: $y \geq-\sqrt{10}$
B) $\mathrm{D}: x \geq 5$
$R: y \geq \sqrt{10}$
C) D: $x \geq 5$
R: $y \geq-\sqrt{10}$
\qquad

Answer: C
Diff: 0 Type: BI

Graph the function.
13) $y=\sqrt{|x|}-2$
13)

A)

C)

B)

D)

Answer: B
Diff: $0 \quad$ Type: BI
Determine an appropriate viewing window for the given function and use it to display its graph.
14) $f(x)=\sqrt[3]{x-3}$

A)

C)

B)

D)

Answer: D
Diff: 0 Type: BI

Using the graph below, find the domain and range of the given function, and sketch the graph.

$$
\text { 15) } y=-f(x)
$$

A) D: [-7.5, 1]; R: [-1, 5]

15)
B) $\mathrm{D}:[-7,2]$; $\mathrm{R}:[-4,2]$

C) $D:[-5,4]$; $R:[-3,3]$

Answer: C
Diff: 0 Type: BI
16) $y=f(-x)$

A) D: $[-4,5]$; R: $[-3,3]$

D) D: [-4,5]; R: [-3,3]

16)
B) D: [-4,5]; R: $[-3,4]$

Answer: C
Diff: 0 Type: BI

The problem tells how many units and in what direction the graph of the given equation is to be shifted. Give an equation for the shifted graph. Then sketch the original graph with a dashed line and the shifted graph with a solid line.

$$
\text { 17) } y=x^{3} \quad \text { Down } 3, \text { left } 5
$$

17) \qquad

A) $y+3=(x+5)^{3}$

B) $y-3=(x+5)^{3}$

Answer: A
Diff: 0 Type: BI

Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
18) $f(x)=x^{2 \beta}(7-x)$
A) $[-2,2]$ by $[-15,15]$
B) $[-4,0]$ by $[-5,5]$
C) $[-4,10]$ by $[-10,10]$
D) $[0,10]$ by $[-10,10]$

Answer: C
Diff: 0 Type: MC

Find the domain and graph the function.
19) $F(x)=\sqrt{-x}$
19)

Find a formula for the function graphed.
20)

20)
A) $f(x)= \begin{cases}6-x, & 0 \leq x \leq 3 \\ x, & 3<x \leq 6\end{cases}$
B) $f(x)= \begin{cases}x+6, & 0 \leq x \leq 3 \\ -x, & 3<x \leq 6\end{cases}$
C) $f(x)= \begin{cases}-x, & 0 \leq x \leq 3 \\ x+6, & 3<x \leq 6\end{cases}$
D) $f(x)= \begin{cases}x, & 0 \leq x \leq 3 \\ 6-x, & 3<x \leq 6\end{cases}$

Answer: D
Diff: $0 \quad$ Type: BI
Find the exact value of the trigonometric function. Do not use a calculator or tables.
21) $\sin \left(\frac{5 \pi}{4}\right)$
A) $-\frac{\sqrt{3}}{2}$
B) $\frac{\sqrt{2}}{2}$
C) $\frac{\sqrt{3}}{2}$
D) $-\frac{\sqrt{2}}{2}$

Answer: D
Diff: $0 \quad$ Type: BI

Determine whether or not the graph is a graph of a function of x.

22)
23) \qquad

A) Function
B) Not a function

Answer: A
Diff: $0 \quad$ Type: BI

Match the equation with its graph.
23) $y=2 x$
A)

C)

B)

D)

Answer: B
Diff: 0 Type: MC
The problem tells how many units and in what direction the graph of the given equation is to be shifted. Give an equation for the shifted graph. Then sketch the original graph with a dashed line and the shifted graph with a solid line.

$$
\text { 24) } y=-\sqrt{x} \quad \text { Left } 2
$$

\qquad

$$
\text { C) } y=\sqrt{x-2}
$$

B) $y=\sqrt{x+2}$

D) $y=\sqrt{x}+2$

Answer: B
Diff: $0 \quad$ Type: BI

Graph the function.

25) \qquad

Find the domain and range of the function.
26) $f(x)=-5+\sqrt{x}$
26)
A) D: $(-\infty, 0], R:(-\infty,-5]$
B) $\mathrm{D}:[0, \infty)$, $\mathrm{R}:[-5, \infty)$
C) $\mathrm{D}:[0, \infty), \mathrm{R}:(-\infty, \infty)$
D) $\mathrm{D}:(-\infty, \infty)$, R: $[-5, \infty)$

Answer: B
Diff: $0 \quad$ Type: BI

Using the graph below, find the domain and range of the given function, and sketch the graph.

A) $\mathrm{D}:[-7,2]$; $\mathrm{R}:[-2,4]$

B) $\mathrm{D}:[-7,2]$; $\mathrm{R}:[-2,4]$

Answer: C
Diff: 0 Type: BI
Solve for the angle θ, where $0 \leq \theta \leq 2 \pi$
28) $\cos ^{2} \theta=\frac{3}{4}$
28)
A) $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
B) $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
C) $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
D) $\theta=0, \pi, 2 \pi$

Answer: B
Diff: 0 Type: BI

Graph the function. Determine the symmetry, if any, of the function.

29)

Answer: D
Diff: 0 Type: BI

For

$$
f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D
$$

identify either $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D as indicated for the sine function.
30) $y=\frac{1}{2} \cos (-3 \theta-2 \pi) \quad$ Find C. \qquad
A) $-\frac{2}{3} \pi$
B) $\frac{\pi}{8}$
C) $-\frac{\pi}{8}$
D) $\frac{4}{3} \pi$

Answer: A
Diff: 0 Type: BI
Graph the function.
31) Graph the function $f(x)=\sin 4 x+\cos 2 x$.
31)

A)

C)

Answer: C
Diff: 0 Type: BI
B)

D)

Use the appropriate addition formula to find the exact value of the expression.

32) $\tan \left(-\frac{7 \pi}{12}\right)$
A) $\frac{2-\sqrt{3}}{4}$
B) $-2-\sqrt{3}$
C) $2+\sqrt{3}$
D) $\frac{2+\sqrt{3}}{4}$

Answer: C
Diff: $0 \quad$ Type: BI

Provide an appropriate response.

33) Graph the functions $f(x)=\frac{x}{2}$ and $g(x)=2+\frac{6}{x}$ together to identify the values of x for which $\frac{x}{2}>2+$ $\frac{6}{x}$.
Confirm your findings algebraically.
A) $(6, \infty)$
B) $(-\infty,-2) \cup(0,6)$
C) $(-2,6)$
D) $(-2,0) \cup(6, \infty)$

Answer: D
Diff: $0 \quad$ Type: BI

Solve the problem.

34) You want to make an angle measuring 150° by marking an arc on the perimeter of a disk with a diameter of 8 inches and drawing lines from the ends of the arc to the disk's center. To the nearest tenth of an inch, how long should the arc be?
A) 5.2 in.
B) 20.9 in .
C) 10.5 in .
D) 41.9 in .

Answer: C
Diff: $0 \quad$ Type: BI

Find the domain and graph the function.
35) $g(x)=-9+3 x-x^{2}$
35)

\qquad
A) D: $(-\infty, \infty)$

B) $\mathrm{D}:(-\infty, \infty)$

C) D: $\left(-\infty,-\frac{27}{4}\right]$
D) $\mathrm{D}:(-\infty, \infty)$

Answer: B
Diff: $0 \quad$ Type: BI

The problem tells how many units and in what direction the graph of the given equation is to be shifted. Give an equation for the shifted graph. Then sketch the original graph with a dashed line and the shifted graph with a solid line.
36) $x^{2}+y^{2}=4 \quad$ Up 2, right 4
36)

Answer: D
Diff: 0 Type: BI
Determine an appropriate viewing window for the given function and use it to display its graph.

$$
\text { 37) } f(x)=\frac{\sin 2 x}{x}
$$

\qquad

Answer: B
Diff: 0 Type: BI

Determine if the function is even, odd, or neither.
38) $f(x)=\frac{3}{x^{2}+8}$
A) Even
B) Odd
C) Neither

Answer: A
Diff: 0 Type: BI
38) \qquad

Solve the problem.
39) The accompanying figure shows the graph of $y=x^{2}$ shifted to a new position. Write the equation for the new graph.

A) $y=x^{2}+3$
B) $y=(x+3)^{2}$
C) $y=(x-3)^{2}$
D) $y=x^{2}-3$

Answer: C
Diff: 0 Type: BI
Express the given function as a composite of functions f and g such that $y=f(g(x))$.
40) $y=|3 x+9|$
A) $f(x)=x, g(x)=3 x+9$
B) $f(x)=|-x|, g(x)=3 x-9$
C) $f(x)=-|x|, g(x)=3 x+9$
D) $f(x)=|x|, g(x)=3 x+9$

Answer: D
Diff: 0 Type: BI
Graph the function. Determine the symmetry, if any, of the function.
41) $y=-x^{4 \beta}$
41)

A) No symmetry
C) Symmetric about the y-axis

B) No symmetry

D) Symmetric about the y-axis

Answer: C
Diff: 0 Type: BI

Find the formula for the function.
42) Express the perimeter of a square as a function of the square's side length x.
42) \qquad
A) $p=6 x$
B) $p=x^{3}$
C) $p=\frac{3 x}{2}$
D) $p=4 x$

Answer: D
Diff: 0 Type: BI

Solve the problem.

43) If $f(x)=4 x^{2}+5 x+7$ and $g(x)=5 x-6$, find $g(f(x))$.
44) \qquad
A) $4 x^{2}+5 x+1$
B) $20 x^{2}+25 x+41$
C) $4 x^{2}+25 x+29$
D) $20 x^{2}+25 x+29$

Answer: D
Diff: $0 \quad$ Type: BI

Find the domain and range for the indicated function.
44) $f(x)=5, \quad g(x)=5+\sqrt{x}$; g/f
A) D: $x \geq-5$
$R: y \geq 0$
B) D: $x \geq 0$
$R: y \leq 1$
C) D: $x \geq 0$
$R: y \leq 5$
D) D: $x \geq 0$
$R: y \geq 1$

Answer: D
Diff: $0 \quad$ Type: BI

For
$f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D$,
identify either A, B, C, or D as indicated for the sine function.
45) $y=2+2 \sin (2 \theta+2 \pi) \quad$ Find D.
B) 1
C) π
D) 2

Answer: D
Diff: 0 Type: BI

Solve the problem.
46) The variable s is proportional to t, and $s=25$ when $t=100$. Determine t when $s=50$.
A) 200
B) 190
C) 250
D) 4

Answer: A
Diff: 0 Type: BI

Determine an appropriate viewing window for the given function and use it to display its graph.
47) $f(x)=\frac{x^{3}}{x^{2}+9}$
46) \qquad

Provide an appropriate response.
48) For what values of x is $\lfloor x\rfloor=-2$?
A) $-2<x \leq-1$
B) $-3 \leq x<-2$
C) $-2 \leq x<-1$
D) $-3<x \leq-2$
48) \qquad

Answer: C
Diff: 0 Type: BI
49) Graph the equation $|x+y|=1$ and decide whether or not the graph represents a function of x. \qquad

A) Function
B) Not a Function

Answer: B
Diff: 0 Type: BI
One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.
50) $\cos x=\frac{5}{13}, \quad x$ in $\left[-\frac{\pi}{2}, 0\right]$
50)
A) $\sin x=\frac{12}{13}, \tan x=-\frac{5}{12}$
B) $\sin x=-\frac{12}{13}, \tan x=-\frac{12}{5}$
C) $\sin x=-\frac{12}{13}, \tan x=-\frac{5}{12}$
D) $\sin x=\frac{12}{13}, \tan x=\frac{12}{5}$

Answer: B Diff: 0 Type: BI

State the period of the function and graph.
51) $\sin \left(\mathrm{x}-\frac{\pi}{4}\right)^{(\overbrace{\mathrm{y}}^{\prime}}$
51)
A) Period 2π

B) Period 2π

C) Period 2π

D) Period 2π

Answer: A
Diff: 0 Type: BI

Graph the function.

52) $g(x)= \begin{cases}\frac{1}{x+1}, & x<-1 \\ x, & x \geq-1\end{cases}$

A)

53)

B)

Answer: D
Diff: 0 Type: BI
One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.
53) $\tan x=1, \quad x$ in $\left[\pi, \frac{3 \pi}{2}\right]$
53)
A) $\sin x=\frac{\sqrt{2}}{2}, \cos x=\frac{\sqrt{2}}{2}$
B) $\sin x=-\frac{\sqrt{2}}{2}, \cos x=-\frac{\sqrt{2}}{2}$
C) $\sin x=-\frac{\sqrt{2}}{2}, \cos x=\frac{\sqrt{2}}{2}$
D) $\sin x=\frac{\sqrt{2}}{2}, \cos x=-\frac{\sqrt{2}}{2}$

Answer: B

Diff: 0 Type: BI

Graph the function. Specify the intervals over which the function is increasing and the intervals where it is decreasing.
54) $y=-|x|$

54) \qquad
A) Increasing - $\infty<x \leq 0$
Decreasing $0 \leq x<\infty$

B) Decreasing - $\infty<x \leq 0$
Increasing $0 \leq x<\infty$

C) Increasing - $\infty<x<\infty$

D) Decreasing - $\infty<x<\infty$

Answer: A
Diff: 0 Type: BI

Use the appropriate addition formula to find the exact value of the expression.

55) $\cos \left(-\frac{7 \pi}{12}\right)$ \qquad
A) $\sqrt{2}-\sqrt{6}$
B) $\frac{\sqrt{2}-\sqrt{6}}{4}$
C) $\frac{\sqrt{6}-\sqrt{2}}{4}$
D) $\sqrt{6}+\sqrt{2}$

Answer: B
Diff: $0 \quad$ Type: BI

The equation of an ellipse is given. Put the equation in standard form and sketch the ellipse.
56) $16(x-3)^{2}+9(y-1)^{2}=144$ \qquad

B) $\frac{(x-3)^{2}}{9}+\frac{(y-1)^{2}}{16}=1$

C) $\frac{(x-3)^{2}}{9}+\frac{(y-1)^{2}}{16}=1$

D) $\frac{(x-3)^{2}}{16}+\frac{(y-1)^{2}}{9}=1$

Answer: B
Diff: 0 Type: BI

Find the exact value of the trigonometric function. Do not use a calculator or tables.

$$
\text { 57) } \cos \left(\frac{\pi}{6}\right)
$$

\qquad
A) $\frac{\sqrt{3}}{2}$
B) $\frac{\sqrt{2}}{2}$
C) $\frac{2 \sqrt{3}}{3}$
D) $\sqrt{3}$

Answer: A
Diff: $0 \quad$ Type: BI

Express the given quantity in terms of $\sin x$ or $\cos x$.

$$
\text { 58) } \sin \left(\frac{3 \pi}{2}+x\right)
$$

A) $\cos x$
B) $-\cos x$
C) $-\cos x-\sin x$
D) $\sin x-\cos x$

Answer: B
Diff: $0 \quad$ Type: BI

Express the given function as a composite of functions f and g such that $y=f(g(x))$.

Graph the function.

59) $y=(4 x+3)^{7}$
A) $f(x)=x^{7}, g(x)=4 x+3$
B) $f(x)=(4 x)^{7}, g(x)=3$
C) $f(x)=4 x+3, g(x)=x^{7}$
D) $f(x)=4 x^{7}, g(x)=x+3$

Answer: A
Diff: $0 \quad$ Type: BI
60) Graph the lower branch of the hyperbola $y^{2}-4 x^{2}=1$.
59) \qquad

Answer: C
Diff: 0 Type: BI

Graph the function. Specify the intervals over which the function is increasing and the intervals where it is decreasing.
61) $\mathrm{y}=(-\mathrm{x})^{3 / 2}$

A) Increasing $0 \leq x<\infty$

B) Decreasing - $\infty<x \leq 0$

D) Decreasing - $\infty<x<\infty$

Answer: B Diff: 0 Type: BI

Find the domain and range for the indicated function.
62) $f(x)=\sqrt{x+11}, \quad g(x)=\sqrt{x-11} ; \quad f+g$
A) D: $x \geq-11$
$R: y \geq 0$
B) $\begin{aligned} & \text { D: } x \geq-11 \\ & \text { R: } y \geq \sqrt{22}\end{aligned}$
C) D: $x \geq 11$
$R: y \geq \sqrt{22}$
D) D: $x \geq 11$
$R: y \geq 0$
\qquad

Answer: C
Diff: $0 \quad$ Type: BI

Find the exact value of the trigonometric function. Do not use a calculator or tables.

$$
\text { 63) } \cos \left(\frac{7 \pi}{6}\right)
$$

A) $-\frac{\sqrt{3}}{2}$
B) $\frac{2 \sqrt{3}}{3}$
C) $-\frac{1}{2}$
D) $\frac{\sqrt{3}}{2}$

Answer: A
Diff: 0 Type: BI
64) $\tan \left(\frac{5 \pi}{4}\right)$
64) \qquad
A) 1
B) $\frac{\sqrt{2}}{2}$
C) $\sqrt{3}$
D) -1

Answer: A
Diff: 0 Type: BI

Solve the problem.

65) If $f(x)=\sqrt{x}, g(x)=\frac{x}{4}$, and $h(x)=4 x+16$, find $h(g(f(x)))$.
66) \qquad
A) $\sqrt{x+4}$
B) $\sqrt{x}+16$
C) $\sqrt{x}+4$
D) $4 \sqrt{x}+16$

Answer: B
Diff: $0 \quad$ Type: BI

Find the function value.
66) $\sin ^{2} \frac{\pi}{6}$
66) \qquad
A) $\frac{3}{4}$
B) $\frac{2-\sqrt{3}}{4}$
C) $2-\sqrt{3}$
D) $\frac{1}{4}$

Answer: D
Diff: 0 Type: BI

Solve the problem.

67) The accompanying figure shows the graph of $y=x^{2}$ shifted to a new position. Write the equation
68) for the new graph.

A) $y=(x-5)^{2}$
B) $y=x^{2}+5$
C) $y=x^{2}-5$
D) $y=(x+5)^{2}$

Answer: D
Diff: $0 \quad$ Type: BI

One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.
68) $\tan x=-\frac{12}{5}, \quad x$ in $\left[\frac{\pi}{2}, \pi\right]$
68) \qquad
A) $\sin x=\frac{12}{13}, \cos x=-\frac{5}{13}$
B) $\sin x=\frac{5}{13}, \cos x=-\frac{12}{13}$
C) $\sin x=\frac{12}{13}, \cos x=\frac{5}{13}$
D) $\sin x=-\frac{12}{13}, \cos x=\frac{5}{13}$

Answer: A
Diff: 0 Type: BI

Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
69) $f(x)=x^{2}+\frac{1}{10} \cos 80 x$
69) \qquad
A) $[-0.1,0.1]$ by $[-0.1,0.1]$
B) $[-0.6,0.6]$ by $[-0.1,0.6]$
C) $[-10,10]$ by $[-10,10]$
D) $[-2,2]$ by $[-1,1]$

Answer: B
Diff: $0 \quad$ Type: MC

Determine an appropriate viewing window for the given function and use it to display its graph.
70) $f(x)=\frac{2 x^{2}}{x^{2}-4}$
70) \qquad

A)

B)

Answer: D
Diff: 0 Type: BI
Find the requested information using the law of cosines and/or the law of sines. Round to three decimal places.
71) A triangle has sides $a=5$ and $b=3$ and angle $C=30^{\circ}$. Find the length of side c.
71)
A) 4.359
B) 2.832
C) 8.019
D) 4.584

Answer: B
Diff: $0 \quad$ Type: BI
Determine if the function is even, odd, or neither.
72) $f(x)=7 x^{4}+6 x+5$
72)
A) Even
B) Odd
C) Neither

Answer: C
Diff: 0 Type: BI
The equation of an ellipse is given. Put the equation in standard form and sketch the ellipse.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Solve the problem.

74) Let $f(x)=x-1$ and $g(x)=x^{2}$. Graph f and g together with $f \circ g$ and $g \circ f$.
75) \qquad

Answer:

Diff: $0 \quad$ Type: SA
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
The problem tells by what factor and direction the graph of the given function is to be stretched or compressed. Give an equation for the stretched or compressed graph.
75) $y=x^{2}+1 \quad$ compressed vertically by a factor of 2
75)
A) $y=\frac{x^{2}}{2}+1$
B) $y=4 x^{2}+1$
C) $y=2 x^{2}+2$
D) $y=\frac{x^{2}}{2}+\frac{1}{2}$
保

Answer: D
Diff: 0 Type: BI
76) $y=x^{2}+3 \quad$ stretched horizontally by a factor of 3
76) \qquad
A) $y=\frac{x^{2}}{3}+3$
B) $y=9 x^{2}+3$
C) $y=3 x^{2}+9$
D) $y=\frac{x^{2}}{9}+3$

Answer: D
Diff: 0 Type: BI

Provide an appropriate response.
77) Consider the function $y=\sqrt{1-\frac{1}{x}}$. Can x be negative? \qquad
A) Yes
B) No

Answer: A
Diff: 0 Type: BI

Determine if the function is even, odd, or neither.
78) $f(x)=3 x^{2}-2$
78)
C) Neither
A) Even
B) Odd

Answer: A
Diff: 0 Type: BI

Find the requested information using the law of cosines and/or the law of sines. Round to three decimal places.
79) A triangle has side $\mathrm{c}=2$ and angles $\mathrm{A}=\frac{\pi}{4}$ and $\mathrm{B}=\frac{\pi}{6}$. Find the length b of the side opposite B . \qquad
A) 0.518
B) 0.259
C) 1.035
D) 1.464

Answer: C
Diff: $0 \quad$ Type: BI

Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
80) $f(x)=\sqrt{7+6 x-x^{2}}$
80) \qquad
A) $[-10,20]$ by $[-50,50]$
B) $[-10,10]$ by $[-10,5]$
C) $[-4,5]$ by $[-5,5]$
D) $[-4,5]$ by $[-15,25]$

Answer: D
Diff: $0 \quad$ Type: MC

For

$$
f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D
$$

identify either A, B, C, or D as indicated for the sine function.
81) $y=-2 \sin (\theta-2 \pi) \quad$ Find A.
81)
A) 2π
B) 1
C) -4
D) - 2

Answer: D Diff: 0 Type: BI

Graph the function. Specify the intervals over which the function is increasing and the intervals where it is decreasing.
82) $y=-\frac{1}{x^{2}}$
82)

A) Increasing - $\infty<x<0$

Decreasing $0<x<\infty$

B) Decreasing - $\infty<x<0$ and $0<x<\infty$

D) Increasing - $\infty<x<0$ and $0<x<\infty$

Answer: C
Diff: $0 \quad$ Type: BI

Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
83) $f(x)=\frac{10}{x^{2}-5}$
83)
A) $[-2,2]$ by $[-10,10]$
B) $[-5,0]$ by $[-10,10]$
D) $[-5,5]$ by $[-10,10]$

Answer: D
Diff: 0 Type: MC

Determine if the function is even, odd, or neither.
84) $f(x)=(x-2)(x-1)$
A) Even
B) Odd
C) Neither

Answer: C
Diff: 0 Type: BI

Solve the problem.
85) If you roll a $1-\mathrm{m}$-diameter wheel forward 36 centimeters over level ground, through what angle (to \qquad the nearest degree) will the wheel turn?
A) 1°
B) 21°
C) 72°
D) 41°

Answer: D
Diff: 0 Type: BI
Provide an appropriate response.
86) Graph the function $f(x)=\lceil x\rceil$.
86) \qquad

The problem tells by what factor and direction the graph of the given function is to be stretched or compressed. Give an equation for the stretched or compressed graph.
87) $y=\sqrt{x+1}$
compressed vertically by a factor of 7
87) \qquad
A) $y=\frac{\sqrt{x+1}}{7}$
B) $y=\sqrt{7 x+7}$
C) $y=7 \sqrt{x+1}$
D) $y=\sqrt{7 x+1}$

Answer: A
Diff: 0 Type: BI
Solve the problem.
88) If $f(x)=\sqrt{x+8}$ and $g(x)=8 x-12$, find $f(g(x))$.
88)
A) $2 \sqrt{2 x-1}$
B) $2 \sqrt{2 x+1}$
C) $8 \sqrt{x-4}$
D) $8 \sqrt{x+8}-12$

Answer: A
Diff: 0 Type: BI
Graph the function. Specify the intervals over which the function is increasing and the intervals where it is decreasing.
89) $y=-4 \sqrt{x}$

A) Decreasing - $\infty<x<\infty$

C) Increasing $0 \leq x<\infty$

Answer: B

[^0]89)
B) Decreasing $0 \leq x<\infty$

D) Increasing $0 \leq x<\infty$

Find the formula for the function.
90) Express the volume of a sphere as a function of its radius r.
A) $V=\frac{3}{4} \pi r^{3}$
B) $\mathrm{V}=\frac{2}{3} \pi \mathrm{r}^{2}$
C) $V=\pi r^{3}$
D) $V=\frac{4}{3} \pi \mathrm{r}^{3}$

Answer: D
Diff: 0 Type: BI
Find the domain and graph the function.

$$
\text { 91) } F(t)=\frac{|t+1|}{t+1}
$$

91) \qquad

A) D: $(-\infty, \infty)$

B) $\mathrm{D}:(-\infty,-1) \cup(-1, \infty)$

C) $\mathrm{D}:(-\infty,-1) \cup(-1>\infty)$

Answer: B
Diff: 0 Type: BI

Graph the function.

92) $y=\frac{1}{(x-3)^{2}}$

A)

D) $\mathrm{D}:(-\infty, 0) \cup(0, \infty)$

93) \qquad
B)

C)

Answer: B
Diff: 0 Type: BI
93) $y=\sqrt{x-3}-2$

D)

93) \qquad
B)

C)

Answer: B
Diff: 0 Type: BI
94) $f(x)= \begin{cases}-2-x, & x<1 \\ 4, & x \geq 1\end{cases}$

A)

D)

94)
B)

Answer: C
Diff: 0 Type: BI
Graph the function. Specify the intervals over which the function is increasing and the intervals where it is decreasing.
95) $y=\frac{1}{x^{3}}$

A) Increasing - $\infty<x<\infty$

B) Decreasing - $\infty<x<0$ and $0<x<\infty$

Answer: B
Diff: $0 \quad$ Type: BI

Graph the function.

96) Graph the upper half of the circle defined by the equation $x^{2}+y^{2}-12 x-10 y+45=0$.
97)

A)

B)

C)

D)

Answer: C
Diff: 0 Type: BI
Graph the function in the ts-plane (t -axis horizontal, s -axis vertical). State the period and symmetry of the function.

A) Period 6, symmetric about the origin

B) Period 6, symmetric about the origin

Answer: A

Diff: 0 Type: BI

Graph the function. Determine the symmetry, if any, of the function.

98) $y=\frac{1}{x^{3}}$
99)

A) Symmetric about the origin

B) Symmetric about the origin

Answer: B
Diff: 0 Type: BI
99) $y=\sqrt{-x}$

A) Symmetric about the y-axis

B) No symmetry

99)

Answer: B
Diff: 0 Type: BI
Express the given function as a composite of functions f and g such that $y=f(g(x))$.
100) $y=\frac{1}{x^{2}-4}$
100)
A) $f(x)=\frac{1}{x^{2}}, g(x)=x-4$
B) $f(x)=\frac{1}{x}, g(x)=x^{2}-4$
C) $f(x)=\frac{1}{4}, g(x)=x^{2}-4$
D) $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}}, \mathrm{~g}(\mathrm{x})=-\frac{1}{4}$

Answer: B
Diff: $0 \quad$ Type: BI

Match the equation with its graph.
101) $y=x^{2}$
B)

D)

A)

C)

Answer: D
Diff: $0 \quad$ Type: MC

State the period of the function and graph.
102) $\cos \left(\frac{\pi x}{3}\right)$

101) \qquad
\qquad

C) Period 6

B) Period 6

D) Period 6

Answer: C
Diff: $0 \quad$ Type: BI
Express the given function as a composite of functions f and g such that $y=f(g(x))$.
103) $y=\frac{8}{\sqrt{8 x+8}}$
103) \qquad
A) $f(x)=\frac{8}{x}, g(x)=8 x+8$
B) $f(x)=8, g(x)=\sqrt{8+8}$
C) $f(x)=\frac{8}{\sqrt{x}}, g(x)=8 x+8$
D) $f(x)=\sqrt{8 x+8}, g(x)=8$

Answer: C Diff: 0 Type: BI

Provide an appropriate response.
104) Graph the function $f(x)=\lfloor x\rfloor$.

Answer: D
Diff: 0 Type: BI

Solve the problem.

105) Let $\mathrm{g}(\mathrm{x})=\mathrm{x}+5$. Find a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ so that $(\mathrm{f} \circ \mathrm{g})(\mathrm{x})=2 \mathrm{x}+10$
A) $f(x)=2(x+1)$
B) $f(x)=2 x$
C) $f(x)=2 x-5$
D) $f(x)=2 x+5$

Answer: B

$$
\text { Diff: } 0 \quad \text { Type: BI }
$$

Determine whether or not the graph is a graph of a function of x.
106)

A) Function
B) Not a function

Answer: A
Diff: 0 Type: BI
Determine if the function is even, odd, or neither.
107) $f(x)=-4 x^{5}+9 x^{3}$
107)
C) Neither
A) Even
B) Odd

Answer: B
Diff: 0 Type: BI
Solve the problem.
108) A power plant is located on a river that is 650 feet wide. To lay a new cable from the plant to a \qquad location in a city 1 mile downstream on the opposite side costs $\$ 225$ per foot across the river and $\$$ 150 per foot along the land. Suppose that the cable goes from the plant to a point Q on the opposite side that is x feet from the point P directly opposite the plant. Write a function $\mathrm{C}(\mathrm{x})$ that gives the cost of laying the cable in terms of the distance x.

A) $C(x)=225 \sqrt{x^{2}+650^{2}}+150(5280-x)$
B) $C(x)=225(650-x)+150(1-x)$
C) $C(x)=150 \sqrt{x^{2}+650^{2}}+225(5280-x)$
D) $C(x)=225 \sqrt{x^{2}+650^{2}}+150(1-x)$

Answer: A
Diff: 0 Type: BI

The problem tells by what factor and direction the graph of the given function is to be stretched or compressed. Give an equation for the stretched or compressed graph.
109) $y=1+\frac{1}{x^{2}} \quad$ stretched vertically by a factor of 2
109) \qquad
A) $y=\frac{1}{2}+\frac{1}{2 x^{2}}$
B) $y=1+\frac{2}{x^{2}}$
C) $y=2+\frac{2}{x^{2}}$
D) $y=1+\frac{4}{x^{2}}$

Answer: C
Diff: 0 Type: BI

Determine an appropriate viewing window for the given function and use it to display its graph.
110) $f(x)=\frac{18 x}{x^{2}-9}$
110)

A)

B)

Answer: D
Diff: 0 Type: BI

Solve the problem.

111) The accompanying figure shows the graph of $y=-x^{2}$ shifted to a new position. Write the equation \qquad for the new graph.

A) $y=-(x+2)^{2}$
B) $y=-x^{2}-2$
C) $y=-x^{2}+2$
D) $y=-(x-2)^{2}$

Answer: C
Diff: 0 Type: BI

Assume that f is an even function, g is an odd function, and both f and g are defined on the entire real line. State whether the combination of functions (where defined) is even or odd.
112) fg \qquad
A) Even
B) Odd

Answer: B
Diff: 0 Type: BI

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Use the addition formulas to derive the identity.
113) $\cos \left(x-\frac{\pi}{2}\right)=\sin x$
113)

Answer: $\begin{aligned} \cos \left(x-\frac{\pi}{2}\right) & =\cos x \cos \left(-\frac{\pi}{2}\right)-\sin x \sin \left(-\frac{\pi}{2}\right) \\ & =\cos x(0)-\sin x(-1) \\ & =0+\sin x \\ & =\sin x\end{aligned}$
Diff: $0 \quad$ Type: SA

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.
114) The accompanying figure shows the graph of $y=-x^{2}$ shifted to a new position. Write the equation for the new graph.

A) $y=-(x+2)^{2}-5$
B) $y=-(x-5)^{2}+2$
C) $y=-(x+5)^{2}-2$
D) $y=-(x+5)^{2}+2$

Answer: D
Diff: 0 Type: BI

Graph the function.
115) $G(x)= \begin{cases}|x|+2, & x<0 \\ 2, & x \geq 0\end{cases}$
115)

Answer: D
Diff: $0 \quad$ Type: BI
One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.
116) $\cos x=-\frac{\sqrt{2}}{2}, \quad x$ in $\left[-\frac{3 \pi}{2},-\pi\right]$
116)
A) $\sin x=\frac{\sqrt{2}}{2}, \tan x=-1$
B) $\sin x=-\frac{\sqrt{2}}{2}, \tan x=1$
C) $\sin x=\frac{\sqrt{2}}{2}, \tan x=1$
D) $\sin x=-\frac{\sqrt{2}}{2}, \tan x=-1$

Answer: A
Diff: 0 Type: BI
Use the appropriate addition formula to find the exact value of the expression.
117) $\sin \left(\frac{11 \pi}{12}\right)$
117)
A) $\frac{\sqrt{6}+\sqrt{2}}{4}$
B) $\frac{\sqrt{6}-\sqrt{2}}{4}$
C) $\frac{\sqrt{2}-\sqrt{6}}{4}$
D) $-\frac{\sqrt{6}+\sqrt{2}}{4}$

Answer: B
Diff: 0 Type: BI

Express the given function as a composite of functions f and g such that $y=f(g(x))$.
118) $y=\frac{10}{x^{2}}+6$
118)
A) $f(x)=x+6, g(x)=\frac{10}{x^{2}}$
B) $f(x)=x, g(x)=\frac{10}{x}+6$
C) $f(x)=\frac{10}{x^{2}}, g(x)=6$
D) $f(x)=\frac{1}{x}, g(x)=\frac{10}{x}+6$

Answer: A
Diff: $0 \quad$ Type: BI

Find the domain and range of the function.
119) $F(t)=\frac{9}{\sqrt{t}}$
A) D: $(-\infty, \infty)$, R: $(-\infty, \infty)$
B) $\mathrm{D}:(-\infty, 0), \mathrm{R}:(-\infty, 0)$
C) D: $(0, \infty), \mathrm{R}:(0, \infty)$
D) $\mathrm{D}:[0, \infty), \mathrm{R}:(-\infty, \infty)$

Answer: C Diff: 0 Type: BI

Graph the function.

A)

B)

Answer: A
Diff: 0 Type: BI

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the addition formulas to derive the identity.

$$
\text { 121) } \begin{align*}
\cos \left(x+\frac{\pi}{2}\right)=-\sin x & \\
\text { Answer: } \cos \left(x+\frac{\pi}{2}\right) & =\cos x \cos \frac{\pi}{2}-\sin x \sin \frac{\pi}{2} \\
& =\cos x(0)-\sin x(1) \\
& =0-\sin x \\
& =-\sin x
\end{align*}
$$

Diff: $0 \quad$ Type: SA

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Find a formula for the function graphed.
122)

122)
A) $f(x)= \begin{cases}5, & x<0 \\ -5 x, & x \geq 0\end{cases}$
B) $f(x)= \begin{cases}5, & x<0 \\ -x, & x \geq 0\end{cases}$
D) $f(x)= \begin{cases}5, & x<0 \\ x, & x \geq 0\end{cases}$

Answer: B
Diff: $0 \quad$ Type: BI

Solve the problem.
123) The accompanying figure shows the graph of $y=-x^{2}$ shifted to a new position. Write the equation
123) for the new graph.

A) $y=-(x-5)^{2}$
B) $y=-x^{2}+5$
C) $y=-(x+5)^{2}$
D) $y=-x^{2}-5$

Answer: A
Diff: $0 \quad$ Type: BI

Solve for the angle θ, where $0 \leq \theta \leq 2 \pi$
124) $\sin 2 \theta+\cos \theta=0$
A) $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}$
B) $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
C) $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
D) $\frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$

Answer: C
Diff: 0 Type: BI
Find the domain and range of the function.
125) $F(t)=\frac{10}{3 \sqrt{t}}$
125)
A) D: $(-\infty, \infty), R:(-\infty, \infty)$
B) D: $(0, \infty), \mathrm{R}:(0, \infty)$
C) D: $(-\infty, 0), \mathrm{R}:(-\infty, 0)$
D) D: $[0, \infty), \mathrm{R}:[0, \infty)$

Answer: B
Diff: 0 Type: BI
The problem tells by what factor and direction the graph of the given function is to be stretched or compressed. Give an equation for the stretched or compressed graph.
126) $y=x^{3}+1 \quad$ stretched vertically by a factor of 5
126) \qquad
A) $y=125 x^{3}+1$
B) $y=5 x^{3}+1$
C) $y=\frac{x^{3}}{5}+\frac{1}{5}$
D) $y=5 x^{3}+5$

Answer: D
Diff: 0 Type: BI
Determine if the function is even, odd, or neither.
127) $g(x)=\frac{6 x}{x^{2}+1}$
127)
A) Even
B) Odd
C) Neither

Answer: B
Diff: 0 Type: BI
Determine an appropriate viewing window for the given function and use it to display its graph.
128) $f(x)=\frac{x^{3}}{x^{2}-9}$

Answer: B
Diff: 0 Type: BI

Graph the function in the ts-plane (t-axis horizontal, s -axis vertical). State the period and symmetry of the function.

$$
\text { 129) } s=-\cot 4 t
$$

129)

A) Period π, symmetric about the origin

C) Period $\frac{\pi}{4}$, symmetric about the origin

Answer: C Diff: 0 Type: BI

Graph the function.

130) $y=\frac{1}{x-1}$

131) \qquad

A)

C)

Answer: C
Diff: $0 \quad$ Type: BI
131) $y=\left|x^{2}-1\right|$

131) \qquad

Answer: B
Diff: 0 Type: BI

Determine whether or not the graph is a graph of a function of x.
132)
132)

A) Function
B) Not a function

Answer: B
Diff: 0 Type: BI

Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
133) $f(x)=\frac{x^{2}-1}{x^{2}+1}$
133)
B) $[-10,10]$ by $[-10,10]$
D) $[-10,10]$ by $[-2,2]$

Answer: D
Diff: $0 \quad$ Type: MC

Graph the function.

134) Graph five periods of the function $f(x)=\tan 4 x$.

A)

B)

Answer: A
Diff: $0 \quad$ Type: BI

Express the given quantity in terms of $\sin x$ or $\cos x$.
135) $\cos (6 \pi-x)$
A) $-\cos x$
B) $\cos x+\sin x$
C) $\cos x-\sin x$
D) $\cos x$
135)

Answer: D

Diff: $0 \quad$ Type: BI
Use the appropriate addition formula to find the exact value of the expression.
136) $\sin \left(-\frac{11 \pi}{12}\right)$
136)
A) $\frac{\sqrt{6}+\sqrt{2}}{4}$
B) $-\frac{\sqrt{6}+\sqrt{2}}{4}$
C) $\frac{\sqrt{2}-\sqrt{6}}{4}$
D) $\frac{\sqrt{6}-\sqrt{2}}{4}$

Answer: C
Diff: 0 Type: BI

Solve the problem.
137) The accompanying figure shows the graph of $y=-x^{2}$ shifted to a new position. Write the equation
137) for the new graph.

A) $y=-x^{2}-6$
B) $y=-(x-6)^{2}$
C) $y=-(x+6)^{2}$
D) $y=-x^{2}+6$

Answer: A
Diff: 0 Type: BI
One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.

$$
\begin{align*}
& \text { 138) } \sin x=-\frac{2}{3}, \quad x \text { in }\left[-\frac{\pi}{2}, 0\right] \\
& \begin{array}{ll}
\text { A) } \cos x=\frac{\sqrt{5}}{3}, \tan x=\frac{2 \sqrt{5}}{5} & \text { B) } \cos x=-\frac{\sqrt{5}}{3}, \tan x=\frac{2 \sqrt{5}}{5} \\
\text { C) } \cos x=-\frac{\sqrt{5}}{3}, \tan x=-\frac{2 \sqrt{5}}{5} & \text { D) } \cos x=\frac{\sqrt{5}}{3}, \tan x=-\frac{2 \sqrt{5}}{5}
\end{array}
\end{align*}
$$

Answer: D
Diff: 0 Type: BI
Find the requested information using the law of cosines and/or the law of sines. Round to three decimal places.
139) A triangle has sides $a=4$ and $b=3$ and angle $C=30^{\circ}$. Find the sine of B.
139)
A) 0.974
B) 0.244
C) 0.081
D) 0.731

Answer: D
Diff: 0 Type: BI

Find a formula for the function graphed.
140)

A) $f(x)= \begin{cases}5, & x<0 \\ -5, & x \geq 0\end{cases}$
B) $f(x)= \begin{cases}-5, & x \leq 0 \\ 5, & x>0\end{cases}$
C) $f(x)= \begin{cases}5 x, & x \leq 0 \\ -5 x, & x>0\end{cases}$
D) $f(x)= \begin{cases}5, & x \leq 0 \\ -5, & x>0\end{cases}$

Answer: D

Diff: 0 Type: BI

Solve the problem.

141) The accompanying figure shows the graph of $y=x^{2}$ shifted to a new position. Write the equation for the new graph.

A) $y=(x+2)^{2}-1$
B) $y=(x-1)^{2}+2$
C) $y=(x+1)^{2}-2$
D) $y=(x-1)^{2}-2$

Answer: D
Diff: $0 \quad$ Type: BI

Express the given quantity in terms of $\sin x$ or $\cos x$.
142) $\sin (2 \pi-x)$
140) \qquad

Find the exact value of the trigonometric function. Do not use a calculator or tables.
143) $\tan \left(\frac{\pi}{3}\right)$
A) 2
B) $\frac{\sqrt{3}}{3}$
C) $\frac{\sqrt{3}}{2}$
D) $\sqrt{3}$

Answer: D
Diff: $0 \quad$ Type: BI

Provide an appropriate response.
144) Graph the functions $f(x)=\frac{4}{x-1}$ and $g(x)=\frac{2}{x+1}$ together to identify the values of x for which
$\frac{4}{x-1}<\frac{2}{x+1}$. Confirm your findings algebraically.
A) $(-1,1) \cup(1, \infty)$
B) $(-3,-1) \cup(1, \infty)$
C) $(-\infty,-3)$
D) $(-3, \infty)$

Answer: C
Diff: $0 \quad$ Type: BI

Determine an appropriate viewing window for the given function and use it to display its graph.
145) $f(x)=x^{5}-x^{3}+x^{2}+4$
A)

B)

Answer: A
Diff: 0 Type: BI

Express the given quantity in terms of $\sin x$ or $\cos x$.
146) $\cos \left(\frac{7 \pi}{2}-x\right)$
A) $\sin (-x)$
B) $-\sin x$
C) $\sin x$
D) $\cos x+\sin x$

Answer: B
Diff: 0 Type: BI

Graph the function. Determine the symmetry, if any, of the function.
147) $y=-\frac{1}{x^{2}}$
147)

A) Symmetric about the y-axis

C) Symmetric about the y-axis

B) Symmetric about the y-axis

D) No symmetry

Answer: A
Diff: $0 \quad$ Type: BI

Provide an appropriate response.

148) What is the domain of the function $y=\sqrt{1-\frac{1}{x}}$?
149)

A) $(0,1]$
B) $(-\infty, \infty)$
C) $(-\infty, 0) \cup[1, \infty)$
D) $(-\infty, 0) \cup(1, \infty)$

Answer: C Diff: 0 Type: BI

Graph the function.

149) Graph the function $f(x)=2 \cos ^{3} x$.

A)

C)

Answer: A
Diff: 0 Type: BI

Use the appropriate addition formula to find the exact value of the expression.
150) $\tan \left(\frac{7 \pi}{12}\right)$
150)
A) $2+\sqrt{3}$
B) $\frac{2-\sqrt{3}}{4}$
C) $-2-\sqrt{3}$
D) $\frac{2+\sqrt{3}}{4}$

Answer: C
Diff: $0 \quad$ Type: BI

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Solve the problem.
151) Graph $y=\sin \frac{x}{2}$ and $y=\csc \frac{x}{2}$ together for $-2 \pi \leq x \leq 2 \pi$. Comment on the behavior of \csc
151) \qquad $\frac{x}{2}$ in relation to the signs and values of $\sin \frac{x}{2}$.

Answer: When $y=\sin \frac{x}{2}$ is at a maximum point, which is at $x=(4 n+1) \pi$ for all integers n, y $=\csc \frac{x}{2}$ is at a minimum point. Similarly, when $y=\sin \frac{x}{2}$ is at minimum point, , which is at $x=(4 n-1) \pi$ for all integers $n, y=\csc \frac{x}{2}$ is at a maximum point.
Diff: $0 \quad$ Type: SA

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Graph the function. Specify the intervals over which the function is increasing and the intervals where it is decreasing.
152) $y=-x^{4 \beta}$
152)

A) Increasing - $\infty<x<0$
Decreasing $0<x<\infty$

B) Decreasing - $\infty<x \leq 0$
Increasing $0 \leq x<\infty$

C) Increasing - $\infty<x<\infty$

D) Decreasing - $\infty<x<\infty$

Answer: A
Diff: 0 Type: BI

Solve the problem.

153) If $f(x)=-7 x+1$ and $g(x)=9 x^{2}-4 x-7$, find $g(f(-3))$.
A) 155
B) 4261
C) -601
D) 103

Answer: B
Diff: $0 \quad$ Type: BI

Find the domain and graph the function.
154) $G(x)=\sqrt{|x|}$

A) D: $(-\infty, \infty)$

B) $\mathrm{D}:[0, \infty$
C) $\mathrm{D}:(-\infty, 0)$

Answer: A
Diff: 0 Type: BI

D) $\mathrm{D}:(-\infty, 0]$

Determine whether or not the graph is a graph of a function of x.
155)

A) Function
B) Not a function

Answer: A
Diff: $0 \quad$ Type: BI

Graph the function.

156) $\mathrm{y}=\sqrt{2 \mathrm{x}-2}$

A)

157)

B)

\qquad
路

Answer: A
Diff: 0 Type: BI

Provide an appropriate response.
157) What real numbers x satisfy the equation $\lfloor x\rfloor=\lceil x\rceil$?
A) $\{x \mid x \in$ real numbers $\}$
B) $\{x \mid x=0\}$
C) $\{x \mid x \in$ integers $\}$
D) \varnothing

Answer: C
Diff: 0 Type: BI
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Solve the problem.
158) Use the angle sum formulas to derive $\sin (A-B)=\sin A \cos B-\cos A \sin B$.
158)

$$
\begin{aligned}
\text { Answer: } & \sin (A-B) \\
& =\sin (A+(-B)) \\
& =\sin A \cos (-B)+\cos A \sin (-B) \\
& =\sin A \cos B-\cos A \sin B \\
\text { Diff: } 0 & \text { Type: SA }
\end{aligned}
$$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Assume that f is an even function, g is an odd function, and both f and g are defined on the entire real line. State whether the combination of functions (where defined) is even or odd.
159) $\mathrm{g} \circ \mathrm{g}$
159)
A) Even
B) Odd

Answer: B

Diff: 0 Type: BI

Express the given quantity in terms of $\sin \mathrm{x}$ or $\cos \mathrm{x}$.
160) $\sin (6 \pi+x)$
160) \qquad
A) $-\sin x$
B) $\cos x-\sin x$
C) $\cos x+\sin x$
D) $\sin x$

Answer: D
Diff: $0 \quad$ Type: BI
Graph the function.
161) $y=5-\sqrt{x}$
161)

A)

C)

B)

D)

Answer: D
Diff: $0 \quad$ Type: BI
The equation of an ellipse is given. Put the equation in standard form and sketch the ellipse.
162) $6 x^{2}+(y+2)^{2}=6$
162)

Answer: B
Diff: 0 Type: BI
B) $x^{2}+\frac{(y+2)^{2}}{6}=1$

C) $\frac{x^{2}}{6}+(y+2)^{2}=1$

D) $\frac{x^{2}}{6}+(y+2)^{2}=1$

Determine if the function is even, odd, or neither.
163) $f(x)=4$
163)
A) Even
B) Odd
C) Neither

Answer: A
Diff: $0 \quad$ Type: BI

Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
164) $f(x)=x^{4}-9 x^{2}+5 x$
164)
A) $[-5,5]$ by $[-25,15]$
B) $[-10,15]$ by $[-5,5]$
D) $[-25,15]$ by $[-5,5]$

Answer: A
Diff: 0 Type: MC

Solve the problem.
165) The kinetic energy K of a mass is proportional to the square of its velocity v. If $K=7200$ joules when \qquad $\mathrm{v}=12 \mathrm{~m} / \mathrm{sec}$, what is K when $\mathrm{v}=8 \mathrm{~m} / \mathrm{sec}$?
A) 2560 joules
B) 3840 joules
C) 3520 joules
D) 3200 joules

Answer: D
Diff: 0 Type: BI

Graph the function.
166) $y=\frac{5}{x^{2}}+1$
166)

Answer: C
Diff: 0 Type: BI
Find the exact value of the trigonometric function. Do not use a calculator or tables.
167) $\tan \left(\frac{\pi}{4}\right)$
A) 1
B) $\frac{\sqrt{2}}{2}$
C) $\frac{\sqrt{3}}{2}$
D) $\sqrt{2}$

Answer: A
Diff: 0 Type: BI

Express the given quantity in terms of $\sin \mathbf{x}$ or $\cos \mathbf{x}$.
168) $\cos (3 \pi+x)$
168)
A) $-\sin x$
B) $-\cos x$
C) $\cos x$
D) $\sin x-\cos x$

Answer: B
Diff: 0 Type: BI

For

$$
f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D
$$

identify either A, B, C, or D as indicated for the sine function.
169) $y=-4 \cos \left(5 x+\frac{\pi}{2}\right) \quad$ Find B.
169)
A) $\frac{2 \pi}{5}$
B) π
C) 4
D) $\frac{\pi}{2}$

Answer: A
Diff: 0 Type: BI

Graph the function. Determine the symmetry, if any, of the function.
170) $y=-|x|$
170)

A) Symmetric about the origin
B) Symmetric about the x-axis

C) Symmetric about the y-axis

D) Symmetric about the y-axis

Answer: C
Diff: 0 Type: BI

Solve the problem.

171) If $f(x)=-3 x+7$ and $g(x)=-2 x^{2}+6 x+5$, find $g(f(-4))$.
172) \qquad
A) 160
B) -603
C) 40
D) 81

Answer: B

Diff: 0 Type: BI

Using the graph below, find the domain and range of the given function, and sketch the graph.

A) D: [-7, 2]; R: [-4, 2]

C) D: $[-5,4]$; R: $[-3,3]$

B) $\mathrm{D}:[-8,1] ; \mathrm{R}:[-2.5,5]$

D) D: [-4, 5]; R: [-3,3]

Answer: A
Diff: $0 \quad$ Type: BI

Solve the problem.
173) On a circle of radius 18 meters, how long is an arc that subtends a central angle of 45° ?
A) $\frac{9}{2} \mathrm{~m}$
B) $810 \pi \mathrm{~m}$
C) $\frac{9 \pi}{2} \mathrm{~m}$
D) 810 m

Answer: C
Diff: 0 Type: BI
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
174) Graph the functions $f(x)=\sqrt{x}$ and $g(x)=\sqrt{2-x}$ together with their sum, product, two differences, and two quotients.

Answer:

Diff: $0 \quad$ Type: SA
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
175) $f(x)=x^{3}-2 x^{2}-3 x+10$
175)
A) $[-5,5]$ by $[-5,25]$
B) $[-20,20]$ by $[-100,100]$
C) $[-2,2]$ by $[-10,10]$
D) $[-5,25]$ by $[-5,5]$

Answer: A
Diff: 0 Type: MC
The equation of an ellipse is given. Put the equation in standard form and sketch the ellipse.
176) $49 x^{2}+4 y^{2}=196$
176)
B) $\frac{x^{2}}{4}+\frac{y^{2}}{49}=1$

D) $\frac{\mathrm{x}^{2}}{49}+\frac{\mathrm{y}^{2}}{4}=1$

Answer: B
Diff: $0 \quad$ Type: BI

Find the domain and range of the function.
177) $g(z)=-6-\sqrt{z}$
177)
A) D: $(-\infty,-6], \mathrm{R}:(-\infty, \infty)$
B) $\mathrm{D}:(-\infty, \infty)$, $\mathrm{R}:(-\infty,-6]$
C) $\mathrm{D}:[0, \infty), \mathrm{R}:(-\infty,-6]$
D) $\mathrm{D}:(-\infty, 0], \mathrm{R}:[-6, \infty)$

Answer: C
Diff: $0 \quad$ Type: BI

One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.

$$
\text { 178) } \sin x=-\frac{\sqrt{3}}{2}, \quad x \text { in }\left[-\frac{\pi}{2}, 0\right]
$$

178)

A) $\cos x=\frac{1}{2}, \tan x=\sqrt{3}$
B) $\cos x=-2, \tan x=\frac{\sqrt{3}}{3}$
C) $\cos x=\frac{1}{2}, \tan x=-\sqrt{3}$
D) $\cos x=-\frac{1}{2}, \tan x=-\sqrt{3}$

Answer: C
Diff: $0 \quad$ Type: BI

Determine an appropriate viewing window for the given function and use it to display its graph.
179) $y=16 \sqrt{\frac{16+x^{2}}{16}}$

A)

B)

C)

Answer: B
Diff: $0 \quad$ Type: BI
Graph the function.
180) $y=(x-4)^{2 \beta}$
A)

D)

180)
B)

Answer: D
Diff: 0 Type: BI
For
$f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D$,
identify either $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D as indicated for the sine function.
181) $y=5 \cos \left(3 x+\frac{\pi}{2}\right) \quad$ Find A.
181)
A) 15
B) 3
C) $\frac{\pi}{2}$
D) 5

Answer: D
Diff: $0 \quad$ Type: BI
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Solve the problem.
182) The standard formula for the tangent of the difference of two angles is
182) $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$. Derive the formula.
Answer: $\tan (\mathrm{A}-\mathrm{B})=\frac{\sin (\mathrm{A}-\mathrm{B})}{\cos (\mathrm{A}-\mathrm{B})}=\frac{\sin \mathrm{A} \cos \mathrm{B}-\sin \mathrm{B} \cos \mathrm{A}}{\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}}=$ $\frac{(\cos A \cos B)^{-1}(\sin A \cos B-\sin B \cos A)}{(\cos A \cos B)^{-1}(\cos A \cos B+\sin A \sin B)}=\frac{\tan A-\tan B}{1+\tan A \tan B}$.
Diff: 0 Type: SA
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Determine an appropriate viewing window for the given function and use it to display its graph.
183) $f(x)=-0.6 x^{6}-x^{5}+5 x^{4}-4 x^{3}-6 x^{2}+x-3$

A)

C)

Answer: D
Diff: $0 \quad$ Type: BI

For
$f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D$,
identify either A, B, C, or D as indicated for the sine function.
184) $y=5 \sin \left(4 x+\frac{\pi}{2}\right) \quad$ Find B.
184)
A) $\frac{\pi}{2}$
B) 4
C) 5
D) π

Answer: A
Diff: $0 \quad$ Type: BI

Find the function value.
185) $\sin ^{2} \frac{\pi}{12}$
185)
A) $\frac{2-\sqrt{3}}{4}$
B) $2-\sqrt{3}$
C) $\frac{2+\sqrt{3}}{4}$
D) $\frac{1-\sqrt{3}}{2}$

Answer: A

$$
\text { Diff: } 0 \quad \text { Type: BI }
$$

Solve the problem.
186) Let $f(x)=\sqrt{x-3}$. Find a function $y=g(x)$ so that $(f \circ g)(x)=\sqrt{x^{2}-3}$.
A) $g(x)=x^{2}-3$
B) $g(x)=x^{2}$
C) $g(x)=2 x$
D) $g(x)=x^{2}+3$

Answer: B

$$
\text { Diff: } 0 \quad \text { Type: BI }
$$

Graph the function in the ts-plane (t -axis horizontal, s -axis vertical). State the period and symmetry of the function. 187) $\mathrm{s}=\mathrm{sec}\left(\frac{\mathrm{t}}{3}\right)$

Answer: A
Diff: 0 Type: BI

One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.
188) $\sin x=\frac{5}{13}, \quad x$ in $\left[\frac{\pi}{2}, \pi\right]$
188) \qquad
A) $\cos x=-\frac{12}{13}, \tan x=-\frac{12}{5}$
B) $\cos x=\frac{12}{13}, \tan x=\frac{5}{12}$
C) $\cos x=\frac{12}{13}, \tan x=-\frac{12}{5}$
D) $\cos x=-\frac{12}{13}, \tan x=-\frac{5}{12}$

Answer: D
Diff: $0 \quad$ Type: BI

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Solve the problem.

189) Graph $y=\cos 2 x$ and $y=\sec 2 x$ together for $-\frac{3 \pi}{4} \leq x \leq \frac{3 \pi}{4}$. Comment on the behavior of 189) \qquad $\sec 2 x$ in relation to the signs and values of $\cos 2 x$.
Answer: When $y=\cos 2 x$ is at a maximum point, which is at any multiple of $\pi, y=\sec 2 x$ is a minimum point. Similarly, when $\cos (2 x)$ is at a minimum point, which is at any odd multiple of $\frac{\pi}{2}, y=\sec 2 x$ is a at maximum point.

Diff: 0 Type: SA
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Find the exact value of the trigonometric function. Do not use a calculator or tables.
190) $\sec \left(-\frac{3 \pi}{2}\right)$
190)
A) -1
B) 1
C) 0
D) Undefined

Answer: D
Diff: $0 \quad$ Type: BI
Find a formula for the function graphed.
191)
191)

A) $f(x)= \begin{cases}-2 x, & x \leq 1 \\ x+1, & x>1\end{cases}$
B) $f(x)= \begin{cases}2 x, & x \leq 1 \\ x+1, & x>1\end{cases}$
C) $f(x)= \begin{cases}-2 x, & x \leq 1 \\ x+2, & x>1\end{cases}$
D) $f(x)= \begin{cases}x, & x \leq 1 \\ 2 x+1, & x>1\end{cases}$

Answer: A
Diff: 0 Type: BI
The problem tells how many units and in what direction the graph of the given equation is to be shifted. Give an equation for the shifted graph. Then sketch the original graph with a dashed line and the shifted graph with a solid line.

A) $y-1=\frac{1}{x-4}$

C) $y-1=\frac{1}{x+4}$

Answer: D
Diff: 0 Type: BI
B) $y+1=\frac{1}{x+4}$

D) $y+1=\frac{1}{x-4}$

Find the domain and graph the function.
193) $f(x)=-7 x+9$
193)

A) D: $(-\infty, \infty)$

B) $\mathrm{D}:[0, \infty)$
C) D: $(-\infty, \infty)$

Answer: D
Diff: $0 \quad$ Type: BI

D) $\mathrm{D}:(-\infty, \infty)$

Match the equation with its graph.

194) $y=2^{x}$
A)

C)

B)

D)

Answer: A
Diff: 0 Type: MC

Provide an appropriate response.

195) Graph the equation $y^{2}=x$ and decide whether or not the graph represents a function of x.
196)

A) Function
B) Not a Function

Answer: B
Diff: 0 Type: BI

Assume that f is an even function, g is an odd function, and both f and g are defined on the entire real line. State whether the combination of functions (where defined) is even or odd.
196) $\mathrm{g} \circ \mathrm{f}$
A) Even
B) Odd

Answer: A
Diff: $0 \quad$ Type: BI

Express the given quantity in terms of $\sin \mathbf{x}$ or $\cos \mathbf{x}$.
197) $\cos \left(\frac{7 \pi}{2}+x\right)$
196) \qquad
A) $\cos x+\sin x$
B) $-\sin x$
C) $\cos x$
D) $\sin x$

Answer: D

$$
\text { Diff: } 0 \quad \text { Type: BI }
$$

Solve the problem.
198) A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 13 inches by 26 inches by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the volume V of the box as a function of x.

A) $V(x)=(13-x)(26-x)$
B) $V(x)=(13-2 x)(26-2 x)$
C) $V(x)=x(13-2 x)(26-2 x)$
D) $V(x)=x(13-x)(26-x)$

Answer: C
Diff: $0 \quad$ Type: BI

Determine whether or not the graph is a graph of a function of x.
199)

A) Function
B) Not a function

Answer: B
Diff: $0 \quad$ Type: BI

Use the appropriate addition formula to find the exact value of the expression.
200) $\sin \left(\frac{17 \pi}{12}\right)$
A) $-\frac{\sqrt{6}+\sqrt{2}}{4}$
B) $\frac{\sqrt{6}+\sqrt{2}}{4}$
C) $\frac{\sqrt{2}-\sqrt{6}}{4}$
D) $\frac{\sqrt{6}-\sqrt{2}}{4}$

Answer: A
Diff: $0 \quad$ Type: BI

Find the domain and graph the function.
201) $G(t)=\frac{1}{|t-2|}$

A) $\mathrm{D}:(-\infty, 0) \cup(0, \infty)$

B) $\mathrm{D}:(-\infty, 2) \cup(2, \infty)$

C) $\mathrm{D}:(-\infty, \infty)$

D) $\mathrm{D}:(-\infty, 2) \cup(2, \infty)$

Answer: B
Diff: $0 \quad$ Type: BI

Find the formula for the function.
202) A point P in the first quadrant lies on the graph of the function $f(x)=x^{2}$. Express the slope of the \qquad line joining P to the origin as a function of x.
A) $m=x$
B) $m=\frac{1}{x}$
C) $m=2 x$
D) $m=\frac{2}{x}$

Answer: A
Diff: 0 Type: BI

Use the appropriate addition formula to find the exact value of the expression.
203) $\tan \left(\frac{13 \pi}{12}\right)$
203) \qquad
A) $2+\sqrt{3}$
B) $2-\sqrt{3}$
C) $\frac{2+\sqrt{3}}{4}$
D) $\frac{2-\sqrt{3}}{4}$

Answer: B
Diff: 0 Type: BI

Find the formula for the function.
204) Express the area of a square as a function of its side length x.
204) \qquad
A) $A=x^{4}$
B) $A=4 x$
C) $A=x^{2}$
D) $A=2 x$

Answer: C
Diff: $0 \quad$ Type: BI

Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
205) $f(x)=7+7 x-x^{3}$ \qquad
A) $[-10,20]$ by $[-50,50]$
B) $[-4,5]$ by $[-5,5]$
C) $[-4,5]$ by $[-15,25]$
D) $[-10,10]$ by $[-10,5]$

Answer: C
Diff: 0 Type: MC

Graph the function. Specify the intervals over which the function is increasing and the intervals where it is decreasing.
206) $\mathrm{y}=\frac{1}{\mathrm{x}}$

A) Increasing - $\infty<x<0$ and $0<x<\infty$

C) Decreasing - $\infty<x<0$ Increasing $0<x<\infty$

Answer: D
Diff: $0 \quad$ Type: BI
B) Increasing - $\infty<x<0$

Decreasing $0<x<\infty$

D) Decreasing - $\infty<x<0$ and $0<x<\infty$

State the period of the function and graph.

A) Period 2π

C) Period 2π

Answer: B
Diff: $0 \quad$ Type: BI
B) Period 2π

D) Period 2π

Solve the problem.

208) If $f(x)=\frac{1}{x}$ and $g(x)=9 x^{6}$, find $g(f(x))$. \qquad
A) $\frac{9}{x}$
B) $\frac{1}{x^{6}}$
C) $\frac{1}{9 x^{6}}$
D) $\frac{9}{x^{6}}$

Answer: D
Diff: $0 \quad$ Type: BI

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

209) What happens if you set $B=-2 \pi$ in the angle sum formulas for the sine and cosine
210) functions? Do the results agree with something you already know?
Answer: If $B=-2 \pi$, then $\cos (A+B)=\cos A$ and $\sin (A+B)=\sin A$. Because the period of both of the sine and cosine functions is 2π, if B is replaced by a multiple of 2π the angle sum formulas must produce the same value as the sine or cosine function.
Diff: $0 \quad$ Type: SA

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Graph the function. Determine the symmetry, if any, of the function.
210) $\mathrm{y}=\frac{1}{\mathrm{x}}$ \qquad

A) Symmetric about the origin

B) Symmetric about the origin

Find a formula for the function graphed.
211)
211)

A) $f(x)= \begin{cases}\frac{1}{2} x+1, & -8 \leq x \leq-2 \\ 5, & -2<x<3 \\ 6-x, & 3 \leq x \leq 8\end{cases}$
B) $f(x)= \begin{cases}\frac{1}{2} x+1, & -8 \leq x \leq-2 \\ 5, & -2<x \leq 3 \\ 6-x, & 3<x \leq 8\end{cases}$
C) $f(x)= \begin{cases}-\frac{1}{2} x+1, & -8 \leq x \leq-2 \\ 5, & -2<x \leq 3 \\ x-6, & 3<x \leq 8\end{cases}$
D) $f(x)= \begin{cases}\frac{1}{2} x+1, & -8<x \leq-2 \\ 5, & -2<x \leq 3 \\ 6-x, & 3<x<8\end{cases}$

Answer: B
Diff: $0 \quad$ Type: BI
211) \qquad
212) $(x+1)^{2}+4 y^{2}=4$

A) $(x+1)^{2}+\frac{y^{2}}{4}=1$

C) $(x+1)^{2}+\frac{y^{2}}{4}=1$

Answer: D
Diff: $0 \quad$ Type: BI
B) $\frac{(x+1)^{2}}{4}+y^{2}=1$

D) $\frac{(x+1)^{2}}{4}+y^{2}=1$

Solve the problem.
213) The figure shown here shows a rectangle inscribed in an isosceles right triangle whose hypotenuse
213) is 6 units long. Express the area A of the rectangle in terms of x.

A) $A(x)=2 x(x-3)$
B) $A(x)=x(3-x)$
C) $\mathrm{A}(\mathrm{x})=2 \mathrm{x}^{2}$
D) $A(x)=2 x(3-x)$

Answer: D
Diff: 0 Type: BI

Find the formula for the function.
214) Express the perimeter of an isosceles triangle with side lengths $x, 5 x$, and $5 x$ as a function of the side length.
A) $p=10 x$
B) $p=11 x$
C) $p=25 x^{3}$
D) $p=10 x^{3}$

Answer: B
Diff: 0 Type: BI
The problem tells by what factor and direction the graph of the given function is to be stretched or compressed. Give an equation for the stretched or compressed graph.
215) $y=1+\frac{1}{x^{2}} \quad$ compressed horizontally by a factor of 2 \qquad
A) $y=1+\frac{4}{x^{2}}$
B) $y=1+\frac{1}{4 x^{2}}$
C) $y=\frac{1}{2}+\frac{1}{2 x^{2}}$
D) $y=2+\frac{2}{x^{2}}$

Answer: B

Diff: 0 Type: BI

Graph the function. Specify the intervals over which the function is increasing and the intervals where it is decreasing.
216) $y=\sqrt{-x}$
216)

C) Decreasing $0 \leq x<\infty$

B) Decreasing - $\infty<x \leq 0$
Increasing $0 \leq x<\infty$

D) Decreasing - $\infty<x \leq 0$

Answer: D
Diff: 0 Type: BI

Find the domain and range for the indicated function.
217) $f(x)=7, \quad g(x)=7+\sqrt{x}$;
f/g
A) D: $x \geq 0$
$R: y \geq 1$
B) $\mathrm{D}: x \geq-7$
$R: y \geq 0$
C) D: $x \geq 0$
$R: y \leq 1$
D) D: $x \geq 0$
R: $y \leq 7$
217) \qquad
C) Neither
A) Even
B) Odd

Answer: C
Diff: 0 Type: BI

Graph the function.

219) $y=\frac{1}{3 x}-3$

A)

C)

Answer: C
Diff: 0 Type: BI
B)

D)

State the period of the function and graph.

A) Period 2π

C) Period 2π

B) Period 2π

D) Period 2π

Answer: C
Diff: 0 Type: BI

Assume that f is an even function, g is an odd function, and both f and g are defined on the entire real line. State whether the combination of functions (where defined) is even or odd.
221) f / g
B) Odd

Answer: B
Diff: 0 Type: BI
Use the appropriate addition formula to find the exact value of the expression.
222) $\cos \left(\frac{19 \pi}{12}\right)$
222)
A) $-\sqrt{6}-\sqrt{2}$
B) $\frac{\sqrt{6}-\sqrt{2}}{4}$
C) $\sqrt{2}-\sqrt{6}$
D) $\frac{\sqrt{2}-\sqrt{6}}{4}$

Answer: B
Diff: $0 \quad$ Type: BI
Find the domain and range of the function.

$$
\text { 223) } F(t)=t^{2}-2
$$

A) $\mathrm{D}:[-4, \infty)$, $\mathrm{R}:[-2, \infty)$
B) $\mathrm{D}:(-\infty, \infty), \mathrm{R}:[-2, \infty)$
C) $\mathrm{D}:[0, \infty)$, $\mathrm{R}:(-\infty,-2]$
D) $\mathrm{D}:(-\infty, \infty)$, $\mathrm{R}:(-\infty, \infty)$

Answer: B

Diff: 0 Type: BI

Find a formula for the function graphed.
224)
224)

A) $f(x)= \begin{cases}5+x & x \leq 2 \\ -5 & x>2\end{cases}$
B) $f(x)= \begin{cases}5+x, & x<2 \\ -5 & x>2\end{cases}$
C) $f(x)= \begin{cases}5-x, & x \leq 2 \\ -5 & x>2\end{cases}$
D) $f(x)= \begin{cases}5-x & x<2 \\ -5 & x \geq 2\end{cases}$

Answer: C
Diff: $0 \quad$ Type: BI

Determine whether or not the graph is a graph of a function of x.
225)
225)

A) Function
B) Not a function

Answer: A
Diff: $0 \quad$ Type: BI

Find a formula for the function graphed.
226)

A) $f(x)= \begin{cases}2, & 0 \leq x \leq 2 \\ 6, & 2<x \leq 4 \\ 2, & 4<x \leq 6 \\ 6, & 6<x \leq 8\end{cases}$
B) $f(x)= \begin{cases}2, & 0 \leq x<2 \\ 6, & 2 \leq x<4 \\ 2, & 4 \leq x<6 \\ 6, & 6 \leq x<8\end{cases}$
C) $f(x)= \begin{cases}6, & 0 \leq x<6 \\ 2, & 2 \leq x<8\end{cases}$
D) $f(x)= \begin{cases}2, & 0 \leq x<6 \\ 6, & 2 \leq x<8\end{cases}$

Answer: B
Diff: $0 \quad$ Type: BI

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Use the addition formulas to derive the identity.

$$
\begin{aligned}
& \text { 227) } \begin{aligned}
\sin \left(x-\frac{\pi}{2}\right)=-\cos x & \\
\text { Answer: } \sin \left(x-\frac{\pi}{2}\right) & =\sin x \cos \left(-\frac{\pi}{2}\right)+\cos x \sin \left(-\frac{\pi}{2}\right) \\
& =\sin x(0)+\cos x(-1) \\
& =0-\cos x \\
& =-\cos x
\end{aligned} \\
& \text { Diff: } 0 \quad \text { Type: SA }
\end{aligned}
$$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Solve the problem.
228) If $f(x)=\frac{x-4}{7}$ and $g(x)=7 x+4$, find $g(f(x))$.
A) $x+8$
B) $-\frac{4}{7}$
C) x
D) $7 x+24$

Answer: C

$$
\text { Diff: } 0 \quad \text { Type: BI }
$$

Assume that f is an even function, g is an odd function, and both f and g are defined on the entire real line. State whether the combination of functions (where defined) is even or odd.
229) f^{2}
229) \qquad
A) Even
B) Odd

Answer: A
Diff: $0 \quad$ Type: BI

Find the formula for the function.
230) Express the area of a circle as a function of its radius r.
230) \qquad
A) $A=2 \pi r$
B) $\mathrm{A}=\pi \mathrm{r}^{2}$
C) $A=\pi r$
D) $\mathrm{A}=\pi \mathrm{r}^{3}$

Answer: B
Diff: $0 \quad$ Type: BI

For

$$
f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D
$$

identify either A, B, C, or D as indicated for the sine function.
231) $y=-\cos \left(\frac{1}{2} \theta+\frac{\pi}{2}\right) \quad$ Find B.
231)
A) 4π
B) $\frac{\pi}{2}$
C) 2
D) 1

Answer: A
Diff: $0 \quad$ Type: BI

Provide an appropriate response.

232) Consider the function $y=\sqrt{1-\frac{1}{x}}$. Can x be greater than 0 , but less than 1 ? \qquad
A) Yes
B) No

Answer: B
Diff: 0 Type: BI

Graph the function.

A)

C)

B)

D)

233) \qquad

Answer: B
Diff: $0 \quad$ Type: BI

Find the domain and range of the function.
234) $f(x)=\frac{8}{8+\sqrt{x}}$
234)
B) $\mathrm{D}:(-\infty, \infty), \mathrm{R}:(0,1]$
D) $\mathrm{D}:[0, \infty), \mathrm{R}:(0,1]$

Answer: D
Diff: $0 \quad$ Type: BI

Graph the function.

235) $y=|x+1|+2$

A)

236)

B)

C)

Answer: C
Diff: 0 Type: BI
State the period of the function and graph.
236) $-\sin 8 x$

A) Period $\frac{\pi}{4}$

D)

236)
B) Period $\frac{\pi}{4}$

C) Period $\frac{\pi}{4}$

D) Period $\frac{\pi}{4}$

Answer: C
Diff: $0 \quad$ Type: BI

Graph the function.

237) Graph two periods of the function $f(x)=-\cot \frac{x}{2}+1$.
238) \qquad

A)

B)

Answer: D
Diff: $0 \quad$ Type: BI
For
$f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D$,
identify either $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D as indicated for the sine function.
238) $y=4 \sin \left(2 x+\frac{\pi}{3}\right) \quad$ Find A.
A) 8
B) 2
C) $\frac{\pi}{3}$
D) 4

Answer: D
Diff: 0 Type: BI
Use the appropriate addition formula to find the exact value of the expression.
239) $\sin \left(\frac{19 \pi}{12}\right)$
239) \qquad
A) $\frac{\sqrt{6}-\sqrt{2}}{4}$
B) $\frac{\sqrt{2}-\sqrt{6}}{4}$
C) $\frac{\sqrt{6}+\sqrt{2}}{4}$
D) $-\frac{\sqrt{6}+\sqrt{2}}{4}$

Answer: D
Diff: $0 \quad$ Type: BI
Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function.
240) $f(x)=2 \cos 60 x$
A) $[-10,10]$ by $[-10,10]$
B) $[-0.2,0.2]$ by $[-4,4]$
C) $[-1,1]$ by $[-4,4]$
D) $[-0.2,0.2]$ by $[-1,1]$

Answer: B
Diff: $0 \quad$ Type: MC
241) $f(x)=\left|x^{2}-4\right|$
241)
A) $[-5,5]$ by $[-2,10]$
B) $[-10,10]$ by $[-15,15]$
C) $[0,5]$ by $[-2,10]$
D) $[-5,5]$ by $[-15,15]$
240) \qquad

Answer: A
Diff: 0 Type: MC

Solve the problem.

242) Boyle's Law says that volume V of a gas at constant temperature increases whenever the pressure P
243)

decreases, so that V and P are inversely proportional. If $P=14.5 \mathrm{lbs} / \mathrm{in}^{2}$ when $V=800 \mathrm{in}^{3}$, then what is V when $\mathrm{P}=22 \mathrm{lbs} / \mathrm{m}^{2}$?
A) $\frac{800}{319} \mathrm{in}^{3}$
B) $\frac{5800}{11} \mathrm{in}^{3}$
C) $\frac{35200}{29} \mathrm{in}^{3}$
D) $\frac{319}{800} \mathrm{in}^{3}$

Answer: B
Diff: 0 Type: BI
243) The accompanying figure shows the graph of $y=-x^{2}$ shifted to a new position. Write the equation for the new graph.

A) $y=-x^{2}+6$
B) $y=-x^{2}-6$
C) $y=-(x-6)^{2}$
D) $y=-(x+6)^{2}$

Answer: D
Diff: 0 Type: BI
Solve for the angle θ, where $0 \leq \theta \leq 2 \pi$
244) $\sin 2 \theta-\cos \theta=0$
A) $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}$
B) $\frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
C) $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
D) $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi$

Answer: A
Diff: 0 Type: BI
Find the exact value of the trigonometric function. Do not use a calculator or tables.
245) $\csc (2 \pi)$
245)
A) -1
B) 0
C) 1
D) Undefined

Answer: D
Diff: 0 Type: BI

Solve the problem.

246) Let $g(x)=\sqrt{x}$. Find a function $y=f(x)$ so that $(f \circ g)(x)=|x|$.
A) $f(x)=x^{2}$
B) $f(x)=\frac{1}{x}$
C) $f(x)=\frac{1}{x^{2}}$
D) $f(x)=x$

Answer: A Diff: $0 \quad$ Type: BI

Graph the function.

A)

C)

B)

D)

Answer: A
Diff: 0 Type: BI

Graph the function. Determine the symmetry, if any, of the function.
248) $y=(-x)^{3 / 2}$

A) No symmetry

C) No symmetry

B) Symmetric about the y-axis

D) Symmetric about the y-axis

Answer: C
Diff: $0 \quad$ Type: BI

State the period of the function and graph.
249) $\cos \left(x+\frac{\pi}{4}\right)$

Answer: B Diff: $0 \quad$ Type: BI
B) Period 2π
D) Period 2π

\qquad

Determine an appropriate viewing window for the given function and use it to display its graph.
250) $f(x)=x^{4}-4 x^{3}+14 x^{2}+x-15$
250)
B)

D)

Answer: B
Diff: 0 Type: BI

Solve the problem.

251) If $f(x)=-3 x+5$ and $g(x)=5 x+8$, find $g(f(x))$.
A) $-15 x+29$
B) $15 x+33$
C) $-15 x+33$
D) $-15 x-17$

Answer: C
Diff: 0 Type: BI
252) If $f(x)=\sqrt{x}, g(x)=\frac{x}{4}$, and $h(x)=4 x+16$, find $f(g(h(x)))$.
252)
A) $4 \sqrt{x}+16$
B) $\sqrt{x+16}$
C) $\sqrt{x}+4$
D) $\sqrt{x+4}$

Answer: D
Diff: $0 \quad$ Type: BI
253) On a circle of radius 16 meters, how long is an arc that subtends a central angle of $\frac{3 \pi}{4}$ radians?
253)
A) 12 m
B) 48 m
C) $4 \pi \mathrm{~m}$
D) $12 \pi \mathrm{~m}$

Answer: D
Diff: 0 Type: BI
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Use the addition formulas to derive the identity.

$$
\text { 254) } \sin \left(x+\frac{\pi}{2}\right)=\cos x
$$

Answer: $\sin \left(x+\frac{\pi}{2}\right)=\sin x \cos \frac{\pi}{2}+\cos x \sin \frac{\pi}{2}$

$$
\begin{aligned}
& =\sin x(0)+\cos x(1) \\
& =0+\cos x \\
& =\cos x
\end{aligned}
$$

Diff: 0 Type: SA
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Find the domain and range of the function.
255) $f(x)=-10-x^{2}$
255)
A) D: $(-\infty, \infty)$, R: $(-\infty, \infty)$
B) D: $(-\infty,-10], R:(-\infty, \infty)$
C) D: $(-\infty, \infty)$, $\mathrm{R}:(-\infty,-10$]
D) D: $(-\infty, \infty)$, $:[-10, \infty)$

Answer: C
Diff: $0 \quad$ Type: BI
Find the formula for the function.
256) A point P in the fourth quadrant lies on the graph of the function $f(x)=-x^{2}$. Express the slope of the line joining P to the origin as a function of x.
A) $m=-2 x$
B) $m=x$
C) $m=-x$
D) $m=\frac{1}{x}$

Answer: C
Diff: $0 \quad$ Type: BI
257) Express the length d of a square's diagonal as a function of its side length x.
257)
A) $d=x \sqrt{2}$
B) $d=2 x$
C) $d=x \sqrt{3}$
D) $d=x$

Answer: A
Diff: 0 Type: BI

Determine if the function is even, odd, or neither.
258) $g(x)=\left|3 x^{3}\right|$
258)
A) Even
B) Odd
C) Neither

Answer: A
Diff: 0 Type: BI

Solve the problem.

259) The accompanying figure shows the graph of $y=x^{2}$ shifted to a new position. Write the equation for the new graph.

A) $y=x^{2}-3$
B) $y=x^{2}+3$
C) $y=(x-3)^{2}$
D) $y=(x+3)^{2}$

Answer: B
Diff: 0 Type: BI

Solve for the angle θ, where $0 \leq \theta \leq 2 \pi$
260) $\sin ^{2} \theta=\frac{3}{4}$
260)
A) $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
B) $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
C) $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
D) $\theta=0, \pi, 2 \pi$

Answer: B
Diff: 0 Type: BI

Solve the problem.

261) Let $f(x)=\frac{x}{x-8}$. Find a function $y=g(x)$ so that $(f \circ g)(x)=x$.
262)

A) $g(x)=\frac{8 x}{x-1}$
B) $g(x)=x(x-8)$
C) $g(x)=\frac{x-8}{8}$
D) $g(x)=\frac{1}{x-8}$

Answer: A
Diff: 0 Type: BI

Solve for the angle θ, where $0 \leq \theta \leq 2 \pi$
262) $\cos ^{2} \theta=\frac{1}{4}$
A) $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
B) $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
C) $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
D) $\theta=0, \pi, 2 \pi$

Answer: A
Diff: 0 Type: BI
One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.
263) $\cos x=-\frac{1}{5}, \quad x$ in $\left[\pi, \frac{3 \pi}{2}\right]$
A) $\sin x=-\frac{2 \sqrt{6}}{5}, \tan x=2 \sqrt{6}$
B) $\sin x=\frac{2 \sqrt{6}}{5}, \tan x=-2 \sqrt{6}$
C) $\sin x=-\frac{2 \sqrt{6}}{5}, \tan x=-2 \sqrt{6}$
D) $\sin x=\frac{2 \sqrt{6}}{5}, \tan x=2 \sqrt{6}$

Answer: A
Diff: 0 Type: BI

Graph the function.

264) $g(x)= \begin{cases}4 & x \leq 0 \\ x+1, & x>0\end{cases}$
265)

A)

B)

C)

Answer: C
Diff: 0 Type: BI
Express the given quantity in terms of $\sin x$ or $\cos x$.
265) $\sin (3 \pi+x)$
D)

A) $-\sin x$
B) $\cos x+\sin x$
C) $\sin x$
D) $\cos x-\sin x$
265)

Answer: A
Diff: 0 Type: BI
Solve the problem.
266) If $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+5$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$, find $\mathrm{f}(\mathrm{g}(\mathrm{x})$).
266)
A) $6 x+2$
B) $6 x+9$
C) $6 x+8$
D) $6 x+4$

Answer: A
Diff: 0 Type: BI
Express the given quantity in terms of $\sin x$ or $\cos x$.
267) $\cos (6 \pi+x)$
267)
A) $-\cos x$
B) $\cos x-\sin x$
C) $-\sin x$
D) $\cos x$

Answer: D
Diff: 0 Type: BI
Provide an appropriate response.
268) For what values of x is $\lceil x\rceil=1$?
268)
A) $0<x \leq 1$
B) $1 \leq x<2$
C) $1<x \leq 2$
D) $0 \leq x<1$

Answer: A
Diff: 0 Type: BI

One of $\sin x, \cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.
269) $\tan \mathrm{x}=\frac{5}{12}, \quad \mathrm{x}$ in $\left[\pi, \frac{3 \pi}{2}\right]$
269) \qquad
A) $\sin x=\frac{5}{13}, \cos x=\frac{12}{13}$
B) $\sin x=-\frac{12}{13}, \cos x=-\frac{5}{13}$
C) $\sin x=\frac{12}{13}, \cos x=\frac{5}{13}$
D) $\sin x=-\frac{5}{13}, \cos x=-\frac{12}{13}$

Answer: D

Diff: $0 \quad$ Type: BI

Graph the function.
270) $y=\frac{1}{x}-2$
270) \qquad

A)

B)

C)

Answer: A
Diff: $0 \quad$ Type: BI

Express the given quantity in terms of $\sin x$ or $\cos x$.

$$
\text { 271) } \sin \left(\frac{3 \pi}{2}-x\right)
$$

D)

271)
A) $\cos x$
B) $-\cos (-x)$
C) $-\cos x$
D) $-\cos x-\sin x$

Answer: C Diff: 0 Type: BI

Find the domain and range of the function.
272) $g(z)=\sqrt{1-z^{2}}$
A) $\mathrm{D}:(-1,1), \mathrm{R}:(-1,1)$
B) $\mathrm{D}:[0, \infty)$, $\mathrm{R}:(-\infty, \infty)$
C) $\mathrm{D}:[-1,1], \mathrm{R}:[0,1]$
D) $\mathrm{D}:(-\infty, \infty), \mathrm{R}:(0,1)$

Answer: C
Diff: 0 Type: BI
272) \qquad

Answer Key
Testname: CH1

1) A Diff: 0 Page Ref: Topic:
2) D

Diff: $0 \quad$ Page Ref:
Topic:
3) A Diff: $0 \quad$ Page Ref: Topic:
4) A

Diff: $0 \quad$ Page Ref: Topic:
5) D

Diff: $0 \quad$ Page Ref: Topic:
6) A

Diff: $0 \quad$ Page Ref: Topic:
7) D

Diff: 0 Page Ref: Topic:
8) B

Diff: 0 Page Ref: Topic:
9) D

Diff: $0 \quad$ Page Ref: Topic:
10) C

Diff: $0 \quad$ Page Ref: Topic:
11) D

Diff: $0 \quad$ Page Ref: Topic:
12) C

Diff: 0 Page Ref:
Topic:
13) B

Diff: $0 \quad$ Page Ref:
Topic:
14) D

Diff: $0 \quad$ Page Ref:
Topic:
15) C

Diff: $0 \quad$ Page Ref: Topic:
16) C

Diff: $0 \quad$ Page Ref: Topic:

Answer Key
Testname: CH1
17) A

Diff: $0 \quad$ Page Ref:
Topic:
18) C

Diff: $0 \quad$ Page Ref:
Topic:
19) C

Diff: 0 Page Ref:
Topic:
20) D

Diff: $0 \quad$ Page Ref:
Topic:
21) D

Diff: 0 Page Ref: Topic:
22) A

Diff: 0
Topic:
23) B

Diff: $0 \quad$ Page Ref: Topic:
24) B

Diff: 0 Page Ref: Topic:
25) A

Diff: $0 \quad$ Page Ref: Topic:
26) B

Diff: $0 \quad$ Page Ref: Topic:
27) C

Diff: 0 Page Ref: Topic:
28) B

Diff: 0 Page Ref: Topic:
29) D

Diff: $0 \quad$ Page Ref:
Topic:
30) A

Diff: $0 \quad$ Page Ref:
Topic:
31) C

Diff: $0 \quad$ Page Ref: Topic:
32) C

Diff: $0 \quad$ Page Ref: Topic:

Answer Key
Testname: CH1
33) D

Diff: 0
Topic:
34) C

Diff: 0
Topic:
35) B

Diff: 0
Topic:
36) D

Diff: 0
Topic:
37) B

Diff: $0 \quad$ Page Ref: Topic:
38) A

Diff: 0
Topic:
39) C

Diff: 0 Topic:
40) D

Diff: 0 Topic:
41) C

Diff: 0 Topic:
42) D

Diff: 0
Topic:
43) D

Diff: 0 Topic:
44) D

Diff: 0 Topic:
45) D

Diff: 0 Page Ref: Topic:
46) A

Diff: $0 \quad$ Page Ref: Topic:
47) A

Diff: $0 \quad$ Page Ref: Topic:
48) C

Diff: 0 Page Ref: Topic:

Page Ref:

Page Ref:

Page Ref:

Page Ref:

Page Ref:

Page Ref:

Page Ref: Page Ref: Page Ref: Page Ref:

Page Ref:

Answer Key
Testname: CH1
49) B

Diff: 0 Page Ref: Topic:
50) B

Diff: 0 Page Ref:
Topic:
51) A

Diff: 0 Page Ref:
Topic:
52) D

Diff: 0 Page Ref: Topic:
53) B

Diff: 0 Page Ref: Topic:
54) A

Diff: 0
Topic:
55) B

Diff: 0 Page Ref: Topic:
56) B

Diff: 0 Topic:
57) A

Diff: 0 Topic:
58) B

Diff: 0 Topic:
59) A

Diff: $0 \quad$ Page Ref: Topic:
60) C

Diff: 0 Topic:
61) B

Diff: 0 Topic:
62) C

Diff: $0 \quad$ Page Ref: Topic:
63) A

Diff: 0 Page Ref: Topic:
64) A

Diff: 0 Page Ref: Topic:

Page Ref: Page Ref: Page Ref:

Page Ref:

Page Ref:

Answer Key
Testname: CH1
65) B

Diff: 0 Page Ref:
Topic:
66) D

Diff: 0 Page Ref:
Topic:
67) D

Diff: 0 Page Ref:
Topic:
68) A

Diff: 0 Page Ref:
Topic:
69) B

Diff: 0 Page Ref:
Topic:
70) D

Diff: $0 \quad$ Page Ref:
Topic:
71) B

Diff: 0 Page Ref:
Topic:
72) C

Diff: 0 Topic:
73) D

Diff: 0 Page Ref: Topic:
74)

Diff: 0 Page Ref:
Topic:
75) D

Diff: 0 Page Ref:
Topic:
76) D

Diff: 0 Page Ref:
Topic:

Answer Key
Testname: CH1
77) A Diff: $0 \quad$ Page Ref: Topic:
78) A

Diff: $0 \quad$ Page Ref: Topic:
79) C

Diff: $0 \quad$ Page Ref:
Topic:
80) D

Diff: $0 \quad$ Page Ref:
Topic:
81) D

Diff: 0 Page Ref: Topic:
82) C

Diff: 0 Page Ref:
Topic:
83) D

Diff: $0 \quad$ Page Ref: Topic:
84) C

Diff: 0 Page Ref: Topic:
85) D

Diff: $0 \quad$ Page Ref: Topic:
86) C

Diff: $0 \quad$ Page Ref: Topic:
87) A

Diff: $0 \quad$ Page Ref: Topic:
88) A

Diff: 0 Page Ref:
Topic:
89) B

Diff: $0 \quad$ Page Ref:
Topic:
90) D

Diff: $0 \quad$ Page Ref:
Topic:
91) B

Diff: $0 \quad$ Page Ref: Topic:
92) B

Diff: $0 \quad$ Page Ref: Topic:

Answer Key
Testname: CH1
93) B

Diff: 0 Page Ref:
Topic:
94) C

Diff: 0 Page Ref:
Topic:
95) B

Diff: 0 Page Ref:
Topic:
96) C

Diff: 0
Topic:
97) A

Diff: 0 Topic:
98) B

Diff: 0 Page Ref:
Topic:
99) B

Diff: 0 Page Ref: Topic:
100) B

Diff: 0
Topic:
101) D

Diff: 0
Topic:
102) C

Diff: 0
Topic:
103) C

Diff: 0 Page Ref: Topic:
104) D

Diff: 0 Topic:
105) B

Diff: 0 Page Ref: Topic:
106) A

Diff: 0 Topic:
107) B

Diff: 0 Page Ref: Topic:
108) A

Diff: 0 Page Ref: Topic:

Answer Key
Testname: CH1
109) C

Diff: 0 Page Ref:
Topic:
110) D

Diff: 0 Page Ref:
Topic:
111) C

Diff: 0 Page Ref:
Topic:
112) B

Diff: 0 Page Ref:
Topic:
113) $\cos \left(x-\frac{\pi}{2}\right)=\cos x \cos \left(-\frac{\pi}{2}\right)-\sin x \sin \left(-\frac{\pi}{2}\right)$
$=\cos x(0)-\sin x(-1)$
$=0+\sin x$
$=\sin \mathrm{x}$
Diff: 0
Topic:
114) D

Diff: 0 Page Ref:
Topic:
115) D

Diff: $0 \quad$ Page Ref:
Topic:
116) A

Diff: $0 \quad$ Page Ref:
Topic:
117) B

Diff: $0 \quad$ Page Ref:
Topic:
118) A

Diff: $0 \quad$ Page Ref:
Topic:
119) C

Diff: 0 Topic:
120) A

Diff: 0 Page Ref:
Topic:
Page Ref:
121) $\cos \left(x+\frac{\pi}{2}\right)=\cos x \cos \frac{\pi}{2}-\sin x \sin \frac{\pi}{2}$
$=\cos x(0)-\sin x(1)$
$=0-\sin x$
$=-\sin x$
Diff: 0 Page Ref:
Topic:

Answer Key
Testname: CH1
122) B

Diff: $0 \quad$ Page Ref: Topic:
123) A

Diff: 0 Page Ref: Topic:
124) C

Diff: 0 Page Ref:
Topic:
125) B

Diff: 0 Page Ref:
Topic:
126) D

Diff: 0 Page Ref:
Topic:
127) B

Diff: 0 Page Ref:
Topic:
128) B

Diff: 0 Page Ref:
Topic:
129) C

Diff: 0 Page Ref: Topic:
130) C

Diff: 0 Topic:
131) B

Diff: 0 Page Ref: Topic:
132) B

Diff: 0 Page Ref: Topic:
133) D

Diff: 0 Page Ref: Topic:
134) A

Diff: 0 Page Ref: Topic:
135) D

Diff: 0 Page Ref:
Topic:
136) C

Diff: $0 \quad$ Page Ref: Topic:
137) A

Diff: 0 Page Ref: Topic:

Answer Key
Testname: CH1
138) D

Diff: 0 Page Ref:
Topic:
139) D

Diff: $0 \quad$ Page Ref:
Topic:
140) D

Diff: $0 \quad$ Page Ref:
Topic:
141) D

Diff: 0 Page Ref: Topic:
142) A

Diff: $0 \quad$ Page Ref: Topic:
143) D

Diff: $0 \quad$ Page Ref:
Topic:
144) C

Diff: 0 Page Ref:

Topic:

145) A

Diff: $0 \quad$ Page Ref:

Topic:

146) B

Diff: $0 \quad$ Page Ref: Topic:
147) A

Diff: $0 \quad$ Page Ref:
Topic:
148) C

Diff: $0 \quad$ Page Ref:
Topic:
149) A

Diff: $0 \quad$ Page Ref: Topic:
150) C

Diff: $0 \quad$ Page Ref:
Topic:
151) When $y=\sin \frac{x}{2}$ is at a maximum point, which is at $x=(4 n+1) \pi$ for all integers $n, y=\csc \frac{x}{2}$ is at a minimum point.

Similarly, when $y=\sin \frac{x}{2}$ is at minimum point, , which is at $x=(4 n-1) \pi$ for all integers $n, y=\csc \frac{x}{2}$ is at a maximum point.
Diff: 0 Page Ref:
Topic:
152) A

Diff: $0 \quad$ Page Ref: Topic:

Answer Key
Testname: CH1
153) B

Diff: 0 Page Ref:
Topic:
154) A

Diff: 0 Page Ref:
Topic:
155) A

Diff: 0 Page Ref:
Topic:
156) A

Diff: $0 \quad$ Page Ref:
Topic:
157) C

Diff: 0 Page Ref:
Topic:
158) $\sin (A-B)$
$=\sin (A+(-B))$
$=\sin A \cos (-B)+\cos A \sin (-B)$
$=\sin \mathrm{A} \cos \mathrm{B}-\cos \mathrm{A} \sin \mathrm{B}$
Diff: 0 Page Ref:
Topic:
159) B

Diff: 0 Page Ref:
Topic:
160) D

Diff: $0 \quad$ Page Ref:
Topic:
161) D

Diff: $0 \quad$ Page Ref:
Topic:
162) B

Diff: $0 \quad$ Page Ref:
Topic:
163) A

Diff: 0 Page Ref:
Topic:
164) A

Diff: 0 Page Ref:
Topic:
165) D

Diff: $0 \quad$ Page Ref:
Topic:
166) C

Diff: $0 \quad$ Page Ref:
Topic:
167) A

Diff: $0 \quad$ Page Ref: Topic:

Answer Key
Testname: CH1
168) B

Diff: 0 Page Ref:
Topic:
169) A

Diff: $0 \quad$ Page Ref:
Topic:
170) C

Diff: 0 Page Ref:
Topic:
171) B

Diff: 0 Page Ref:
Topic:
172) A

Diff: 0 Page Ref:
Topic:
173) C

Diff: 0 Page Ref:
Topic:
174)

Diff: 0 Topic:
175) A

Diff: 0 Page Ref:
Topic:
176) B

Diff: $0 \quad$ Page Ref:
Topic:
177) C

Diff: $0 \quad$ Page Ref:
Topic:
178) C

Diff: 0 Page Ref: Topic:
179) B

Diff: $0 \quad$ Page Ref:
Topic:

Answer Key
Testname: CH1
180) D

Diff: 0 Page Ref:
Topic:
181) D

Diff: $0 \quad$ Page Ref:
Topic:
182) $\tan (\mathrm{A}-\mathrm{B})=\frac{\sin (\mathrm{A}-\mathrm{B})}{\cos (\mathrm{A}-\mathrm{B})}=\frac{\sin \mathrm{A} \cos \mathrm{B}-\sin \mathrm{B} \cos \mathrm{A}}{\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}}=$
$\frac{(\cos A \cos B)^{-1}(\sin A \cos B-\sin B \cos A)}{(\cos A \cos B)^{-1}(\cos A \cos B+\sin A \sin B)}=\frac{\tan A-\tan B}{1+\tan A \tan B}$.
Diff: 0 Page Ref:
Topic:
183) D

Diff: 0 Page Ref:
Topic:
184) A

Diff: 0 Page Ref:
Topic:
185) A

Diff: 0 Page Ref:
Topic:
186) B

Diff: $0 \quad$ Page Ref:
Topic:
187) A

Diff: $0 \quad$ Page Ref:
Topic:
188) D

Diff: 0 Page Ref:
Topic:
189) When $y=\cos 2 x$ is at a maximum point, which is at any multiple of $\pi, y=\sec 2 x$ is a minimum point. Similarly, when $\cos (2 x)$ is at a minimum point, which is at any odd multiple of $\frac{\pi}{2}, y=\sec 2 x$ is a at maximum point.

Diff: $0 \quad$ Page Ref:
Topic:
190) D

Diff: $0 \quad$ Page Ref: Topic:
191) A

Diff: $0 \quad$ Page Ref: Topic:
192) D

Diff: $0 \quad$ Page Ref:
Topic:
193) D

Diff: $0 \quad$ Page Ref:
Topic:

Answer Key
Testname: CH1
194) A

Diff: $0 \quad$ Page Ref:
Topic:
195) B

Diff: $0 \quad$ Page Ref:
Topic:
196) A

Diff: $0 \quad$ Page Ref:
Topic:
197) D

Diff: $0 \quad$ Page Ref:
Topic:
198) C

Diff: $0 \quad$ Page Ref:
Topic:
199) B

Diff: $0 \quad$ Page Ref:
Topic:
200) A

Diff: $0 \quad$ Page Ref:
Topic:
201) B

Diff: $0 \quad$ Page Ref: Topic:
202) A

Diff: $0 \quad$ Page Ref: Topic:
203) B

Diff: $0 \quad$ Page Ref:
Topic:
204) C

Diff: $0 \quad$ Page Ref:
Topic:
205) C

Diff: $0 \quad$ Page Ref:
Topic:
206) D

Diff: $0 \quad$ Page Ref:
Topic:
207) B

Diff: $0 \quad$ Page Ref:
Topic:
208) D

Diff: $0 \quad$ Page Ref:
Topic:
209) If $B=-2 \pi$, then $\cos (A+B)=\cos A$ and $\sin (A+B)=\sin A$. Because the period of both of the sine and cosine functions is 2π, if B is replaced by a multiple of 2π the angle sum formulas must produce the same value as the sine or cosine function.
Diff: 0 Page Ref:
Topic:

Answer Key
Testname: CH1
210) D

Diff: 0 Page Ref: Topic:
211) B

Diff: 0 Page Ref: Topic:
212) D

Diff: 0 Page Ref: Topic:
213) D

Diff: 0 Page Ref: Topic:
214) B

Diff: 0 Page Ref: Topic:
215) B

Diff: 0 Page Ref: Topic:
216) D

Diff: 0 Page Ref: Topic:
217) C

Diff: 0 Page Ref: Topic:
218) C

Diff: 0 Page Ref: Topic:
219) C

Diff: 0 Topic:
220) C

Diff: 0 Page Ref: Topic:
221) B

Diff: 0 Topic:
222) B

Diff: 0 Topic:
223) B

Diff: 0 Page Ref: Topic:
224) C

Diff: 0 Page Ref: Topic:
225) A

Diff: $0 \quad$ Page Ref: Topic:

Answer Key
Testname: CH1
226) B

Diff: 0 Page Ref:
Topic:
227) $\sin \left(x-\frac{\pi}{2}\right)=\sin x \cos \left(-\frac{\pi}{2}\right)+\cos x \sin \left(-\frac{\pi}{2}\right)$
$=\sin x(0)+\cos x(-1)$
$=0-\cos x$
$=-\cos x$

Diff: 0
Topic:
228) C

Diff: 0 Topic:
229) A

Diff: $0 \quad$ Page Ref:
Topic:
230) B

Diff: 0 Page Ref:
Topic:
231) A

Diff: 0 Page Ref:
Topic:
232) B

Diff: 0 Page Ref:
Topic:
233) B

Diff: 0 Page Ref:
Topic:
234) D

Diff: 0 Page Ref:
Topic:
235) C

Diff: 0 Page Ref:
Topic:
236) C

Diff: 0 Page Ref: Topic:
237) D

Diff: 0
Topic:
238) D

Diff: 0
Topic:
239) D

Diff: 0 Page Ref:
Topic:
240) B

Diff: 0 Page Ref:
Topic:

Answer Key
Testname: CH1
241) A

Diff: $0 \quad$ Page Ref: Topic:
242) B

Diff: 0 Page Ref:
Topic:
243) D

Diff: 0 Page Ref:
Topic:
244) A

Diff: $0 \quad$ Page Ref:
Topic:
245) D

Diff: 0 Page Ref:
Topic:
246) A

Diff: $0 \quad$ Page Ref:
Topic:
247) A

Diff: 0 Page Ref: Topic:
248) C

Diff: $0 \quad$ Page Ref: Topic:
249) B

Diff: $0 \quad$ Page Ref: Topic:
250) B

Diff: $0 \quad$ Page Ref:
Topic:
251) C

Diff: 0 Page Ref: Topic:
252) D

Diff: 0 Page Ref: Topic:
253) D

Diff: 0 Page Ref:
Topic:
254) $\sin \left(x+\frac{\pi}{2}\right)=\sin x \cos \frac{\pi}{2}+\cos x \sin \frac{\pi}{2}$
$=\sin x(0)+\cos x(1)$
$=0+\cos x$
$=\cos \mathrm{x}$
Diff: 0
Page Ref:
Topic:
255) C

Diff: 0 Page Ref:
Topic:

Answer Key
Testname: CH1
256) C

Diff: 0 Page Ref: Topic:
257) A

Diff: $0 \quad$ Page Ref: Topic:
258) A

Diff: 0 Page Ref: Topic:
259) B

Diff: $0 \quad$ Page Ref: Topic:
260) B

Diff: 0 Page Ref: Topic:
261) A

Diff: 0 Page Ref: Topic:
262) A

Diff: 0 Page Ref: Topic:
263) A

Diff: 0 Page Ref: Topic:
264) C

Diff: $0 \quad$ Page Ref: Topic:
265) A

Diff: 0 Page Ref: Topic:
266) A Diff: 0 Page Ref: Topic:
267) D

Diff: 0 Page Ref: Topic:
268) A

Diff: 0 Page Ref: Topic:
269) D

Diff: $0 \quad$ Page Ref: Topic:
270) A

Diff: 0 Page Ref: Topic:
271) C

Diff: 0 Page Ref: Topic:

Answer Key
Testname: CH1
272) C

Diff: 0 Page Ref: Topic:

[^0]: Diff: $0 \quad$ Type: BI
 Diff: $0 \quad$ Type: BI

