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Preface for Seventh Edition 

This manual contains solutions to all exercises in the text, except those odd-numbered 
exercises for which fairly lengthy complete solutions are given in the answers at the back 
of the text. Then reference is simply given to the text answers to save typing. 

I prepared these solutions myself. While I tried to be accurate, there are sure to be the 
inevitable mistakes and typos. An author reading proof tends to see what he or she wants 
to see. However, the instructor should find this manual adequate for the purpose for 
which it is intended. 
 
Morgan, Vermont J.B.F 
July, 2002 
 

Preface for Eighth Edition 

In keeping with the seventh edition, this manual contains solutions to all exercises in the 
text except for some of the odd-numbered exercises whose solutions are in the back of the 
text book. I made few changes to solutions to exercises that were in the seventh edition. 
However, solutions to new exercises do not always include as much detail as would be 
found in the seventh edition. My thinking is that instructors teaching the class would use 
the solution manual to see the idea behind a solution and they would easily fill in the 
routine details. 

As in the seventh edition, I tried to be accurate. However, there are sure to be some 
errors. I hope instructors find the manual helpful. 
 
Denton, Texas N.B. 
March, 2020 
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0. Sets and Relations 

  1. { 3, 3}−  

  2. {2, –3}. 
  3. {1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, 10, −10, 12, −12, 15, −15, 20, −20, 30, −30,  

 60, −60} 
  4. {2, 3, 4, 5, 6, 7, 8} 

  5. It is not a well-defined set. (Some may argue that no element of +  is large, 
because every element exceeds only a finite number of other elements but is 
exceeded by an infinite number of other elements. Such people might claim the 
answer should be ∅.) 

  6. ∅ 
  7. The set is ∅ because 33 = 27 and 43 = 64. 

  8. {
2n
ar r∈ =  for some a a +∈  and some integer n ≥ 0}. 

  9. It is not a well-defined set. 
10. The set containing all numbers that are (positive, negative, or zero) integer 

multiples of 1, 1/2, or 1/3. 
11. {(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)} 
12. a. This is a function which is both one-to-one and onto B. 

b. This not a subset of A × B, and therefore not a function. 

c. It is not a function because there are two pairs with first member 1. 

d. This is a function which is neither one-to-one (6 appears twice in the second 
coordinate) nor onto B ( 4 is not in the second coordinate). 

e. It is a function. It is not one-to-one because there are two pairs with second member 6. 
It is not onto B because there is no pair with second member 2. 

f. This is not a function mapping A into B since 3 is not in the first coordinate of any 
ordered pair. 

13. Draw the line through P and x, and let y be its point of intersection with the line 
segment CD. 

14. a. [ ] [ ] ( ):  0,1 0,2  where 2x xφ φ→ =  

b. [ ] [ ] ( ):  1, 3 5, 25  wher 2 3e xxφ φ = +→  

c. [ ] [ ] ( ) ( ): ,      ,   where d ca b c d x c x a
b a

φ φ −→ = + −
−

 

15. Let ( ) 1
2: be defined by  tan( ( )).S x xφ φ π→ = −  

16. a. ; cardinality 1∅  

b. , ;  cardinali  { } ty 2a∅  

c. { } { } { }, , , ,  ;  cardinality 4a b a b∅   

d. { } { } { } { } { }, , , , ,  , ,  , ,  , ,  ,  ;  cardinalit{ } y { } 8a b c a b a c b c a b c∅   
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17. Conjecture:  ( ) | |.|  2  | 2s AP A = =   

 Proof The number of subsets of a set A depends only on the cardinality of A, not on 
what the elements of A actually are. Suppose B = {1, 2, 3, · · · , s − 1} and A = {1, 2, 
3, · · · , s}. Then A has all the elements of B plus the one additional element s. All 
subsets of B are also subsets of A; these are precisely the subsets of A that do not 
contain s, so the number of subsets of A not containing s is |P(B)|. Any other subset 
of A must contain s, and removal of the s would produce a subset of B. Thus the 
number of subsets of A containing s is also |P(B)|. Because every subset of A either 
contains s or does not contain s (but not both), we see that the number of subsets of 
A is 2|P(B)|. 

 We have shown that if A has one more element that B, then |P(A)| = 2|P(B)|. Now 
|P(∅)| = 1, so if |A| = s, then |P(A)| = 2s. 

18. We define a one-to-one map φ  of BA onto P(A). Let f ∈ BA, and let 
( ) ( ){ | 1 .}f x A f xφ = ∈ =  Suppose φ  (f ) = φ  (g). Then f (x) = 1 if and only if g(x) 

= 1. Because the only possible values for f (x) and g(x) are 0 and 1, we see that f (x) 
= 0 if and only if g(x) = 0. Consequently f (x) = g(x) for all x ∈ A so f = g and φ  is 
one to one. To show that φ  is onto P(A), let S ⊆ A, and let h : A → {0, 1} be 
defined by h(x) = 1 if x ∈ S and h(x) = 0 otherwise. Clearly φ  (h) = S, showing that 
φ  is indeed onto P(A). 

19. Picking up from the hint, let ( ){ | }.Z x A x xφ= ∈ ∈  We claim that for any 

( ),  .a A a Zφ∈ =  Either ( ) ,a aφ∈  in which case ( ),  or ,a Z a aφ∈ ∈  in which 
case .a Z∈  Thus Z and φ  (a) are certainly different subsets of A; one of them 
contains a and the other one does not. 

  Based on what we just showed, we feel that the power set of A has cardinality 
greater than |A|. Proceeding naively, we can start with the infinite set ,  form its 
power set, then form the power set of that, and continue this process indefinitely. If 
there were only a finite number of infinite cardinal numbers, this process would 
have to terminate after a fixed finite number of steps. Since it doesn’t, it appears 
that there must be an infinite number of different infinite cardinal numbers. 

  The set of everything is not logically acceptable, because the set of all subsets of 
the set of everything would be larger than the set of everything, which is a fallacy. 

20. a.  The set containing precisely the two elements of A and the three (different) 
 elements of B is C = {1, 2, 3, 4, 5} which has 5 elements. 

i) Let A = {−2, −1, 0} and B = {1, 2, 3, · · ·} = .+  Then |A| = 3 and |B| = ℵ0, and A and 
B have no elements in common. The set C containing all elements in either A or B is  
C = {−2, −1, 0, 1, 2, 3, · · ·}. The map φ  : C → B defined by φ  (x) = x + 3 is one to 
one and onto B, so |C| = |B| = ℵ0. Thus we consider 3 + ℵ0 = ℵ0. 

ii) Let A = {1, 2, 3, · · ·} and B = {1/2, 3/2, 5/2, · · ·}. Then |A| = |B| = ℵ0 and A and B 
have no elements in common.   The set C containing all elements in either A of B is C = 
{1/2, 1, 3/2, 2, 5/2, 3, · · ·}. The map φ  : C → A defined by φ  (x) = 2x is one to one 
and onto A, so |C| = |A| = ℵ0. Thus we consider ℵ0 + ℵ0 = ℵ0 

b. We leave the plotting of the points in A × B to you. Figure 0.15 in the text, where  
there are ℵ0 rows each having ℵ0 entries, illustrates that we would consider that  
ℵ0 · ℵ0 = ℵ0. 
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21. There are 102 = 100 numbers (.00 through .99) of the form .##, and 105 = 100, 000 
numbers (.00000 through .99999) of the form .#####. Thus for .##### · · ·, we 
expect 10 0ℵ  sequences representing all numbers x ∈   such that 0 ≤ x ≤ 1, but a 
sequence trailing off in 0’s may represent the same x ∈   as a sequence trailing of 
in 9’s. At any rate, we should have 10 0ℵ  ≥ |[0, 1]| = ;  see Exercise 15. On the 
other hand, we can represent numbers in   using any integer base n > 1, and these 
same 10 0ℵ  sequences using digits from 0 to 9 in base n = 12 would not represent all 
x ∈ [0, 1], so we have 10 .0ℵ ≤   Thus we consider the value of 10 0ℵ  to be .  We 
could make the same argument using any other integer base n > 1, and thus 
consider n 0ℵ =   for n ∈ ,+  n > 1. In particular, 12 12 .0 0ℵ ℵ= =   

22. 
( 2 )| | 2 ) (2 )

0
(, ,  2 ,  2| 2| ,ℵ

  

23. 1. There is only one partition {{a}} of a one-element set {a}. 
24. There are two partitions of {a, b}, namely {{a, b}} and {{a}, {b}}. 
25. There are five partitions of {a, b, c}, namely {{a, b, c}}, {{a}, {b, c}}, {{b},  

{a, c}}, {{c}, {a, b}}, and {{a}, {b}, {c}}. 
26. 15. The set {a, b, c, d} has 1 partition into one cell, 7 partitions into two cells (four 

with a 1,3 split and three with a 2,2 split), 6 partitions into three cells, and 1 
partition into four cells for a total of 15 partitions. 

27. 52. The set {a, b, c, d, e} has 1 partition into one cell, 15 into two cells, 25 into 
three cells, 10 into four cells, and 1 into five cells for a total of 52. (Do a 
combinatorics count for each possible case, such as a 1,2,2 split where there are 15 
possible partitions.) 

28. Reflexive: In order for x R x to be true, x must be in the same cell of the partition as 
the cell that contains x. This is certainly true. 

 Transitive: Suppose that x R y and y R z. Then x is in the same cell as y so ,x y=  
and y is in the same cell as z so that .y z=  By the transitivity of the set equality 
relation on the collection of cells in the partition, we see that x z=  so that x is in 
the same cell as z. Consequently, x R z. 

29. Not an equivalence relation; 0 is not related to 0, so it is not reflexive. 
30. Not an equivalence relation; 3 ≥ 2 but 2 3,≥  so it is not symmetric. 

31. Not an equivalence relation since transitivity fails: 3R 15 and 15 R 5, but 3 R 5. 
Also not reflexive: 1 R 1. 

32. 0 (0,0)=  and ( ),x y  is the circle centered at the origin with radius 2 2.x y+  

33. (See the answer in the text.) 
34. It is an equivalence relation; 

1 1,  11,  21,  31,· · · , 2 2,  12,  22,  32,{ } { } {· · · , · · ·, 10 10,  20,  30,  40,· ·}· .= = =  

35. a. { . . . , –3, 0, 3, . . . }, { . . . , –2, 1, 4, . . .}, { . . .  , –1, 2, 5, . . .} 

b. { . . . , –4, 0, 4, . . . }, { . . . , –3, 1, 4, . . .}, { . . . , –6, –2, 2, . . .}, { . . . , –5, –1, 3, . . .} 

c. { . . . , –5, 0, 5, . . . },  {. . . , –4, 1, 6, . . . }, { . . . , –3, 2, 7, . . .}, { . . . , –2, 3, 8, . . . }. 

{ . . . , –1, 4, 9, . . . } 
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36. a. { }0, 1, 2    b. { }0, 1, 2, 3    c. { }0, 1, 2, 3, 4  

37. { }1 =    ha remainde  rs 1x x n∈ ÷  depends on the value of n. 

38. a. Let h, k, and m be positive integers. We check the three criteria. 
Reflexive: h – h = n0 so h ∼ h. 

Symmetric: If h ∼ k so that h – k = ns for some s ∈ ,  then k – h = n(–s) so k ∼ h. 

 Transitive: If h ∼ k and k ∼ m, then for some s, t ∈ ,  we have h – k = ns and k – m 
= nt. Then h – m = (h − k) + (k – m) = ns + nt = n(s + t), so h ∼ m. 
b. Let h, k ∈ .  In the sense of this exercise, h ∼ k if and only if h – k = nq for some  
q ∈ .  In the sense of Example 0.19, h ≡ k (mod n) if and only if h and k have the same 
remainder when divided by n. Write h = nq1 + r1  and k = nq2 + r2  where 0 ≤ r1 < n and 0 ≤ 
r2 < n. Then 

h – k = n(q1 – q2) + (r1 – r2) 

 and we see that h – k is a multiple of n if and only if r1 = r2. Thus the conditions are 
the same. 

39. ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2     a b a b a a b b+ − + = − + −  which is the sum of two multiples of n. 
Since the sum of two multiples of n is also a multiple of n, ( ) ( )1 1 2 2 .a b a b+ +  

40. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 1 2 1 2 2 2 1 1 2 1 2 2  a b a b a b a b a b a b a b b a a b− = − + − = − + −  which is 
the sum of two multiples of n. Since the sum of two multiples of n is also a multiple 
of n, ( ) ( )1 1 2 2 .a b a b  

41. The name two-to-two function suggests that such a function f should carry every 
pair of distinct points into two distinct points. Such a function is one-to-one in the 
conventional sense. (If the domain has only one element, the function cannot fail to 
be two-to-two, because the only way it can fail to be two-to-two is to carry two 
points into one point, and the set does not have two points.) Conversely, every 
function that is one-to-one in the conventional sense carries each pair of distinct 
points into two distinct points. Thus the functions conventionally called one-to-one 
are precisely those that carry two points into two points, which is a much more 
intuitive unidirectional way of regarding them. Also, the standard way of trying to 
show that a function is one-to-one is precisely to show that it does not fail to be 
two-to-two. That is, proving that a function is one-to-one becomes more natural in 
the two-to-two terminology. 
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1. Binary Operations 

1. b ∗ d = e,   c ∗ c = b,  [(a ∗ c) ∗ e] ∗ a = [c ∗ e] ∗ a = a ∗ a = a 
2. (a ∗ b) ∗ c = b ∗ c = a and a ∗ (b ∗ c) = a ∗ a = a, so the operation might be 

associative, but we can’t tell without checking all other triple products. 
3. (b ∗ d) ∗ c = e ∗ c = a and b ∗ (d ∗ c) = b ∗ b = c, so the operation is not 

associative. 
4. It is not commutative because b ∗ e = c but e ∗ b = b. 
5. Now d ∗ a = d so fill in d for a ∗ d. Also, c ∗ b = a so fill in a for b ∗ c. Now  

b ∗ d = c so fill in c for d ∗ b. Finally, c ∗ d = b so fill in b for d ∗ c. 
6. d ∗ a = (c ∗ b) ∗ a = c ∗ (b ∗ a) = c ∗ b = d. In a similar fashion, substituting c ∗ b 

for d and using the associative property, we find that d ∗ b = c, d ∗ c = c, and d ∗ d 
= d. a is an identity. 

7. It is not commutative because 1 – 2 ≠ 2 – 1. It is not associative because 2 = 1 –  
(2 – 3) ≠ (1 – 2) – 3 = –4. No identity. 

8. Commutative since 2ab + 3 = 2ba + 3. Not associative since (1 ∗  2) ∗ 3 = 45 and  
1 ∗ (2 ∗ 3) = 33. No identity since 0 ∗ e = 3 ≠ 0. 

9. Commutative since a ∗ b = ab + a + b = b ∗ a. Associative since a ∗ b = (a + 1)  
(b + 1) – 1 making it easy to see that (a * b) ∗ c = (a + 1) (b + 1) (c + 1) – 1 = a ∗ 
(b ∗ c). The identity is 0. 

10. It is commutative because 2ab = 2ba for all , .a b +∈  It is not associative because 
(2 )2  2( )

abab ca b c c∗ ∗ = ∗ = , but ( )22 2( )
bcbc aba c a =∗ ∗ = ∗ . No identity. 

11. It is not commutative because 2 ∗ 3 = 23 = 8 ≠ 9 = 32 = 3 ∗ 2. It is not associative 

because a ∗ (b ∗ c) = a ∗ bc = ( ) ,
cba  but (a ∗ b) ∗ c = ab ∗ c = (ab)c = abc, and bc ≠ bc 

for some , .b c +∈  No identity. 

12. If S has just one element, there is only one possible binary operation on S; the table 
must be filled in with that single element. If S has two elements, there are 16 
possible operations, for there are four places to fill in a table, and each may be 
filled in two ways, and 2 ⋅ 2 ⋅ 2 ⋅ 2 = 16. There are 19,683 operations on a set S 
with three elements, for there are nine places to fill in a table, and 39 = 19, 683. 
With n elements, there are n2 places to fill in a table, each of which can be done in 

n ways, so there are ( )2nn  possible tables. 
13. A commutative binary operation on a set with n elements is completely determined 

by the elements on or above the main diagonal in its table, which runs from the 
upper left corner to the lower right corner. The number of such places to fill in is 

2 2

.
2 2

n n n nn − ++ =  

Thus there are ( )2 /2n nn +  possible commutative binary operations on an n-element 
set. For n = 2, we obtain 23 = 8, and for n = 3 we obtain 36 = 729. 

14. nn(n – 1)) since there are n2 – n = n(n – 1) spots to be filled once the diagonal is 
filled. 
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15. 
2–(( )1)nn  since after the first row and column are determined there are (n – 1)2 spots 

to be filled. 
16. It is incorrect. Mention should be made of the underlying set for ∗ and the 

universal quantifier, for all, should appear. 
A binary operation ∗ on a set S is commutative if and only if a ∗ b = b ∗ a for 

all , .a b S∈  

17. The definition is correct. 
18. It is incorrect. Replace the final S by H. 
19. An identity in the set S with operation ∗ is element e S∈  such that for all ,a S∈   

a ∗ e = e ∗ a = a. 
20. No, because e1 ∗ e2 = e1 and e1 ∗ e2 = e2. 
21. This is an operation. 

22. No. Condition 2 is violated. 1 ∗ 2 should be 0, but 0 .+∉  

23. No. Condition 2 is violated. 2 ∗ 1 should be 0, but 0 .+∉  

24. No. Condition 1 is violated since the value of 1 ∗ 2 is not well defined as it could 
either be 1 or –1. Also, Condition 2 is violated since –1 ∗ 2 is undefined. 

25. It is not a binary operation. Condition 1 is violated, for 2 ∗ 3 might be any integer 
greater than 9. 

26. It is not a binary operation. Condition 2 is violated, for 1 ∗ 1 = 0 and 0 .+∉  

27. a. Yes. 
( )

.
a b c d a c b d
b a d c b d a c

− − + − +     
+ =     + +     

 

b. Yes. 
( )

 .
a b c d ac bd ad bc
b a d c ad bc ac bd

− − − − +     
=     + −     

 

28. F T F F F T T T T F F F T F 
29. (See the answer in the text.) 
30. We have (a ∗ b) ∗ (c ∗ d) = (c ∗ d) ∗ (a ∗ b) = (d ∗ c) ∗ (a ∗ b) = [(d ∗ c) ∗ a] ∗ b, 

where we used commutativity for the first two steps and associativity for the last. 
31. The statement is true. Commutativity and associativity assert the equality of 

certain computations. For a binary operation on a set with just one element, that 
element is the result of every computation involving the operation, so the operation 
must be commutative and associative. 

 ∗ a b  

32. a b a The statement is false. Consider the operation on {a, b} defined by 

 b a a 

 the table. Then (a ∗ a) ∗ b = b ∗ b = a but a ∗ (a ∗ b) = a ∗ a = b. 

33. It is associative. 
Proof: [( f + g) + h](x) = ( f + g)(x) + h(x) = [ f (x) + g(x)] + h(x) = f (x) + [g(x) + 
h(x)] = f (x) + [(g + h)(x)] = [ f + (g + h)](x) because addition in  is associative. 
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34. It is not commutative. Let f (x) = 2x and g(x) = 5x. Then ( f – g)(x) = f (x) – g(x) = 
2x – 5x = –3x while (g – f )(x) = g(x) – f (x) = 5x – 2x = 3x. 

35. It is not associative. Let f (x) = 2x, g(x) = 5x, and h(x) = 8x. Then [ f – (g – h)](x) = 
f (x) – (g – h)(x) = f (x) – [g(x) – h(x)] = f (x) – g(x) + h(x) = 2x – 5x + 8x = 5x, but 
[( f – g) – h](x) = ( f – g)(x) – h(x) = f (x) – g(x) – h(x) = 2x – 5x – 8x = –11x. 

36. No identity. 
37. The constant function f (x) = 1 is an identity element in F. 
38. It is commutative. 

Proof: ( f ⋅ g)(x) = f (x) ⋅ g(x) = g(x) ⋅ f (x) = (g ⋅ f )(x) because multiplication in  
is commutative. 

39. It is associative. 
Proof: [( f ⋅ g) ⋅ h](x) = ( f ⋅ g)(x) ⋅ h(x) = [ f (x) ⋅ g(x)] ⋅ h(x) = f (x) ⋅ [g(x) ⋅ h(x)] =  
[ f ⋅ (g ⋅ h)](x) because multiplication in  is associative. 

40. It is not commutative. Let f (x) = x2 and g(x) = x + 1. Then (f o g)(3) = f (g(3)) =  
f (4) = 16 but (g o f )(3) = g(f (3)) = g(9) = 10. 

41. It is not true. Let ∗ be + and let ∗′ be ⋅ and let S = . Then 2 + (3 ⋅ 5) = 17 but (2 + 
3) ⋅ (2 + 5) = 35. 

42. Let , .a b H∈  By definition of H, we have a ∗ x = x ∗ a and b ∗ x = x ∗ b for all 
.x S∈  Using the fact that ∗ is associative, we then obtain, for all ,x S∈  

( ) ( ) ( ) ( ) ( ) ( .)a b x a b x a x b a x b x a b x a b∗ ∗ = ∗ ∗ = ∗ ∗ = ∗ ∗ = ∗ ∗ = ∗ ∗  

This shows that a ∗ b satisfies the defining criterion for an element of H, so 
( ) .a b H∗ ∈  

43. Let , .a b H∈  By definition of H, we have a ∗ a = a and b ∗ b = b. Using, one step 
at a time, the fact that ∗ is associative and commutative, we obtain 

( ) ( ) [( ) ] [ ( )] [ ( )]
[( ) ] ( ) ( ) .

a b a b a b a b a b a b a a b b
a a b b a b b a b b a b

∗ ∗ ∗ = ∗ ∗ ∗ = ∗ ∗ ∗ = ∗ ∗ ∗
= ∗ ∗ ∗ = ∗ ∗ = ∗ ∗ = ∗

 

This show that a ∗ b satisfies the defining criterion for an element of H, so  
( )a b H∗ ∈ . 

44. For any , ,x y S∈  x ∗ y = (x ∗ y) ∗ (x ∗ y) = ((x ∗ y) ∗ x) ∗ y = ((y ∗ x) ∗ x) ∗ y = ((x ∗ x) ∗ y) ∗ y = (x ∗ y) ∗ y = (y ∗ y) ∗ x = y ∗ x. So ∗ is commutative. Since ∗ is 
commutative, (x ∗ y) ∗ z = (y ∗ z) ∗ x = x ∗ (y ∗ z) for and , .x y S∈  So ∗ is 
associative. 


