
Chapter 2

Basic Tools of the Trade

Exercise 2.1 Find a recurrence relation

(1) (of order 2) for the number of compositions of n with parts in N;

(2) for the number of words of length n on [k];

(3) for the number of permutations of [n];

(4) for the reverse conjugate compositions of n.

Use the iteration method to find explicit formulas for the above recurrence
relations.

Solution 2.1 (1) Let an be the number of compositions of n with parts in
N. Then the number of compositions of n with parts in N that start with j
equals an−j . Therefore, an =

∑n
j=1 an−j for n ≥ 1. Hence, an−an−1 = an−1,

or equivalently, an = 2an−1. Iterating this recurrence and using that a0 = 1,
we obtain an = 2n−1 for all n ≥ 1.

(2) Let an,k be the number of words of length n on [k]. By considering the
first element of a word we obtain that an,k = k · an−1,k. The initial condition
is a0,k = 1. Using the iteration method we get that an,k = kn.

(3) Let an be the number of permutations of [n] and let π be any such
permutation. By deleting the letter n from π we get a permutation of [n− 1].
Since there are n possibilities to add back the letter n, we have an = n ·an−1.
The initial condition is a0 = 1, hence an = n(n− 1) · · · 2 · 1 = n!.

(4) Similar to palindromic compositions, we have to maintain symmetry,
so the reverse conjugate compositions of n will be produced from those of
n − 2. For palindromic compositions, we either appended a 1 or increased
the last part by 1 (and the same at the beginning of the composition). Since
the conjugate is involved, increasing a part in σ results in an extra part of
size 1 in the conjugate, which has to be taken into account at the other end.
Thus, for every reverse conjugate composition of n − 2, we create two new
reverse conjugate compositions of n as follows: Increase the first part by 1
and append a 1 at the right end; or prepend a 1 at the left end and increase
the last part by 1. This process does not create duplicates and is reversible,
so if we let rn be the number of reverse conjugate compositions of n, then
we have the following recursion: rn = 2rn−2, with r1 = 1 and r2 = 0. This
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implies that there are no reverse conjugate compositions of an even number,
and r2m+1 = 2mr1 = 2m, which is the result proved in Exercise 1.7.

Exercise 2.2 Use Maple1 or Mathematica2 to find the first 15 terms of the
sequences

(1) an = an−1 + 3an−2 with a0 = 1 and a1 = 2.

(2) bn = n
n−1bn−1 + 1 with b1 = 2.

Solution 2.2 The first 15 terms of the sequence (1) are computed using the
Maple code

aseq:=proc(n)
if n<0 then return "seq not defined for negative indices";
elif n=0 then return 1;

elif n=1 then return 2;
else return(aseq(n-1)+3*aseq(n-2));

end if;
end proc:
seq(aseq(n),n=0..14);

or the Mathematica code

a[0]=1; a[1]=2; a[n_]:=a[n]=a[n-1]+3a[n-2];
Table[a[n],{n,0,14}]

The first 15 terms of the sequence (2) are computed using the Maple code

aseq:=proc(n)
if n<1 then return "seq not defined for negative indices";
elif n=1 then return 2;
else return(n/(n-1)*aseq(n-1)+1);

end if;
end proc:
seq(aseq(n),n=1..15);

or the Mathematica code

b[1]=2; b[n_]:=b[n]=n/(n-1)b[n-1]+1;
Table[b[n],{n,1,15}]//N

Exercise 2.3 Solve the recurrence relations of Exercise 2.2 using Maple or
Mathematica.

1MapleTM is a registered trademark of Waterloo Maple Software.
2Mathematica� is a registered trademark of Wolfram Research, Inc.
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Solution 2.3 (1) The Maple and Mathematica codes are

rsolve({a(n)=a(n-1)+3*a(n-2),a(0)=1,a(1)=2},a(n));

and

RSolve[{a[n]==a[n-1]+3a[n-2],a[0]==1, a[1]==2},a[n],n]

(2) The Maple code is

rsolve({b(n)=n/(n-1)*b(n-1)+1,b(1)=2},b(n));

and the Mathematica code is

RSolve[{b[n]==n/(n-1)b[n-1]+1,b[1]==2},b[n],n]//Simplify

Exercise 2.4 Determine the number of words of length n on the alphabet
[3], and derive the generating function for the number of words of length n−1
on the alphabet [3].

Solution 2.4 Since there are three choices for each letter, the number of
words of length n is given by 3n. Let an denote the number of words of length
n− 1. From the definition of the generating function, we obtain that

A(x) = 1 +
∑

n≥1

3n−1xn = 1 + x
1

1 − 3x
=

1− 2x

1− 3x
,

where the summand 1 accounts for the empty word.

Exercise 2.5 Find recurrence relations for the following counting problems:

(1) The number of words w = w1w2 · · ·wn of length n on {1, 2} satisfying
wi ≥ wi+2 for all i.

(2) The number of words w = w1w2 · · ·wn of length n on {1, 2, 3} satisfying
wi ≥ wi+2 for all i.

Use the iteration method to find explicit formulas for the above recurrence
relations.

Solution 2.5 (1) Let an denote the number of words w = w1w2 · · ·wn of
length n on {1, 2} satisfying wi ≥ wi+2 for all i, and let bn denote the number
of words of length n on {1, 2} whose entries are in nonincreasing order. Then
a2m = b2

m and a2m+1 = bmbm+1. On the other hand, bm = 1 + bm−1 as any
such word either starts with a 1 (in which case there is only one such word),
or it starts with a 2, followed by any such word of length m− 1. Iterating the
recurrence for bm and using b0 = 1 gives that bm = m + 1, so for m ≥ 0,

a2m = (m + 1)2 and a2m+1 = (m + 1)(m + 2).



12 Combinatorics of Compositions and Words: Solutions Manual

(2) Now let an denote the number of words w = w1w2 · · ·wn of length n on
{1, 2, 3} satisfying wi ≥ wi+2 for all i, and let bn denote the number of words
of length n on {1, 2, 3} whose entries are in nonincreasing order. We have the
same recurrence for an as in Part (1), but the recurrence for bm changes. If
the first letter is not a 3, then we are in the situation of Part (1) and there are
a total of m+1 such nonincreasing words. If the first letter of the word is a 3,
then any nonincreasing word can follow, so all together, bm = m + 1 + bm−1.
Iterating this recurrence gives bm = (m + 1)+m + (m− 1)+ . . . +1 =

(
m+2

2

)
.

Thus,

a2m =
(

m + 2
2

)2

and a2m+1 =
(

m + 2
2

)(
m + 3

2

)

for m ≥ 0.
In fact, it is not difficult to derive a general solution for all k directly, without

the recurrence relation. Let an,k be the number of words w of length n on [k]
such that there is no i with wi < wi+2. Thus, w satisfies w1 ≥ w3 ≥ w5 ≥ · · ·
and w2 ≥ w4 ≥ w6 ≥ · · · . In the case n = 2m we have

(
m+k−1

k−1

)
possibilities to

choose the letters at the odd and even locations within the word, respectively
(since

(
m+k−1

k−1

)
gives the number of solutions of x1 + x2 + · · ·+ xk = m where

xi ≥ 0 denotes the number of parts i in the selected positions). Once the
letters have been selected, there is only one way to place them in nonincreasing
order, thus a2m,k =

(
m+k−1

k−1

)2
. Similarly, in the case n = 2m + 1 we get that

a2m+1,k =
(

m+1+k−1
k−1

)(
m+k−1

k−1

)
. Hence, for all n ≥ 0 and k ≥ 1,

an,k =
(

[(n + 1)/2] + k − 1
k − 1

)(
[n/2] + k − 1

k − 1

)

,

which gives the results of Parts (1) and (2) as a special case.

Exercise 2.6

(1) Find an explicit formula for the number of Carlitz compositions of n in
{1, 2}.

(2) A word is called Carlitz if it does not contain two consecutive letters
that are the same. For example, 121 and 212 are the only Carlitz words
on {1, 2} of length three. Find an explicit formula for the number of
Carlitz words on {1, 2} of length n.

Solution 2.6 (1) Let an (respectively bn) be the number of Carlitz com-
positions of n with parts in {1, 2} that start with 1 (respectively 2). Thus
an = bn−1 and bn = an−2 for all n ≥ 3, and therefore an = an−3 and
bn = bn−3 for n > 3. If cn is the number of Carlitz compositions of n with
parts in {1, 2}, then cn = an + bn = an−3 + bn−3 = cn−3. The initial condi-
tions are c0 = c1 = c2 = 1 and c3 = 2. Hence, cn = 2 for n ≡ 0 (mod 3) and
1 otherwise. Note that there is an easy combinatorial proof for the explicit
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formula. When n is a multiple of three, then the composition can start with
either a 1 or a 2, and ends with the opposite value. If n ≡ 1 (mod 3), then
there is one more 1 than there are 2s, and the composition has to start with
a 1. For n ≡ 2 (mod 3), there is one more 2 than there are 1s.

(2) Let an (respectively bn) be the number of Carlitz words of length n on
{1, 2} that start with 1 (respectively 2). If a word starts with 1, the next
letter has to be a 2 and vice versa. Therefore an = bn−1 and bn = an−1 for
all n ≥ 2. If tn is the number of Carlitz words of length n on {1, 2}, then
tn = an + bn = an−1 + bn−1 = tn−1. The initial conditions are t0 = 1 and
t1 = 2. Hence tn = 2 for all n ≥ 1. The combinatorial explanation is similar
to Part (1). Since the word is Carlitz, the letters 1 and 2 have to alternate,
and the word can either start with 1 or with 2, thus tn = 2 for n ≥ 1.

Exercise 2.7 Prove the identity
∑n+1

i=1 Fi = Fn+3− 1 for n ≥ 0 (where Fn is
the n-th Fibonacci number) by using rules for generating functions.

Solution 2.7 By (2.8), the generating function for the Fibonacci sequence is
given by F (x) = x/(1−x−x2). To show the equality, we derive the generating
functions for each side of the identity to be proven and check that they are
equal. On the left hand side, we have a partial sum of the Fibonacci sequence
shifted by 1, so its generating function is given by (see Rules 2.45 and 2.52)

1
1− x

F (x)
x

,

while the generating function for the right-hand side of the identity is given
by

F (x)− F1x− F2x
2

x3
− 1

1− x
.

Substituting F (x) shows equality of the generating functions.

Exercise 2.8 Derive the explicit formula for the Lucas sequence.

Solution 2.8 The Lucas sequence satisfies Ln = Ln−1 + Ln−2 with initial
conditions L0 = 2 and L1 = 1. Using Example 2.25, we get that

Ln = c1

(
1 +
√

5
2

)n

+ c2

(
1−√5

2

)n

with initial conditions

c1 + c2 = 2 and c1

(
1 +
√

5
2

)

+ c2

(
1−√5

2

)

= 1,

which yields c1 = c2 = 1. Thus,

Ln =

(
1 +
√

5
2

)n

+

(
1−√5

2

)n

= αn + βn.
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Exercise 2.9 Prove by induction that the explicit formulas for the Fibonacci
and Lucas sequences produce integer values.

Solution 2.9 Let α = 1+
√

5
2 and β = 1−√

5
2 . Then α − β =

√
5, αβ = −1,

Fn = αn−βn

α−β , and Ln = αn + βn (see Exercise 2.8). For n = 0 we obtain the
integer values F0 = 0 and L0 = 2. We will prove simultaneously by induction
on n that both Fn and Ln are integers. Assuming the hypothesis to be true
for n, we obtain

Fn+1 =
αn+1 − βn+1

α− β
=

(α− β)(αn + βn) + αβ(αn−1 − βn−1)
α− β

= Ln − Fn−1

and

Ln+1 = αn+1 + βn+1 = (α− β)(αn − βn) + αβ(αn−1 + βn−1)
= 5Fn − Ln−1,

and therefore, the formulas always produce integer values.

Exercise 2.10 Prove Theorem 2.22.

Solution 2.10 Let α0 = 1. Since ξ is a root of Δ(x) with multiplicity m, then
ξ is also a root of Δ(s)(x), the s-th derivative of Δ(x) for all s = 0, 1, 2, . . . , m−
1. Substituting an = niξn into (2.3), expanding (binomial theorem) and
collecting terms according to the summation index we get that

r∑

j=0

αj(n− r + r − j)iξn−j =
i∑

k=0

ξn−r

(
i

k

)

(n− r)i−k
r∑

j=0

(r − j)kαjξ
r−j .

Let Bk(x) :=
∑r

j=0(r − j)kαjx
r−j . It is easy to see that B0(x) = Δ(x) and

Bk(x) = x ·B′
k−1(x) for k ≥ 1. Since ξ is a root of Δ(x) with multiplicity m,

B0(ξ) = 0, and by induction we get that B1(ξ) = B2(ξ) . . . = Bm−1(ξ) = 0.
Thus,

∑r
j=0 αj(n − r + r − j)iξn−j = 0, that is, niξn satisfies (2.3) for all

i = 0, 1, . . . , m− 1.

Exercise 2.11 Prove Rules 2.45 and 2.56 either by induction on k or by using
the definition of the generating function.

Solution 2.11 For the ordinary generating function we have

∑

n≥0

an+kxn =
1
xk

∑

n≥0

an+kxn+k =
1
xk

∑

n≥k

anxn =
A(x) −∑k−1

j=0 ajx
j

xk
.
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For the exponential generating function, we have

(DkE)(x) =
∞∑

n=k

ann(n− 1) · · · (n− k + 1)
xn−k

n!
=

∞∑

n=k

an
xn−k

(n− k)!

=
∞∑

n=0

an+k
xn

n!
.

Exercise 2.12 Compute the generating function for the sequence {an}n≥0,
where a0 = 1 and an = F2n for n ≥ 1.

Solution 2.12 The generating function F (x) of the sequence {Fn}n≥0 is
given by x

1−x−x2 (see Example 2.29). Thus, the generating function for the
sequence {an}n≥0 equals

1 +
∑

n≥0

F2nxn = 1 +
∑

n≥0

F2n(
√

x)2n = 1 +
1
2
(F (
√

x) + F (−√x))

= 1 +
x

(1−√x− x)(1 +
√

x− x)
= 1 +

x

1− 3x + x2
.

Exercise 2.13 Let C(m; n) denote the number of compositions of n with m

parts in N. Prove that for fixed m ≥ 1,
∑

n≥0 C(m; n)xn =
xm

(1− x)m
.

Solution 2.13 The generating function for a single nonzero part is given by∑
n≥1 xn = x/(1−x). Therefore, a composition σ ∈ Cm,n (as sum of m parts)

has a generating function that is the m-fold convolution of the generating
functions of the single part by Rule 2.51.

Exercise 2.14

(1) Derive the generating function for the number of compositions of n
in {1, 2} that avoid the substring 11. The recurrence relation for this
sequence was derived in Example 2.17.

(2) The first few values of the sequence are given by 1, 1, 1, 2, 2, 3, 4,
5, 7, 9, 12, 16 and 21. Checking this sequence in the Online Ency-
clopedia of Integer Sequences [21] produces a match with the Padovan
sequence A000931. However, the sequence for the number of composi-
tions is shifted in relation to the Padovan sequence. Use the generating
function given for the Padovan sequence and apply Rule 2.45 to derive
the generating function for the number of compositions in {1, 2} that
avoid the substring 11. Compare your answer to Part (1).
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Solution 2.14 (1) Let an be the number of compositions with parts in {1, 2}
that avoid the substring 11. Multiplying the recurrence relation of Example
2.17 by xn and summing over n ≥ 3, we obtain that

A(x) − x2 − x− 1 = x2(A(x) − 1) + x3A(x),

which is equivalent to A(x) = 1+x
1−x2−x3 .

(2) Since the offset is 0, the given sequence starts with P0, and therefore,
(1 − x2)/(1 − x2 − x3)

ops↔ {Pn}n≥0 with initial conditions P0 = P3 = 1,
P1 = P2 = P4 = 0. Thus using Rule 2.45, the generating function for {an}n≥0

is given by
(1− x2)

(1 − x2 − x3)
− 1− x3

x5
=

1 + x

1− x2 − x3
,

which is identical to the result in Part (1). Moral of the story: if the sequence
of interest is shifted from a sequence with known generating function then
there are two ways to compute the desired generating function.

Exercise 2.15 Find the recurrence relation and the generating function for
the number of compositions of n in {1, 2} without d consecutive 1s. (Hint:
condition on the position of the first 2.)

Solution 2.15 LetAd,n be the set of all compositions of n with parts in {1, 2}
without d consecutive 1s. Define a(n, j) to be the number of compositions in
Ad,n that start with exactly j ones (more specifically, j 1s followed by a
2), and let an denote the number of compositions without d consecutive 1s.
Thus, a(n, j) = an−j−2, where an is the number of compositions of n in {1, 2}
without d consecutive 1s. Counting the compositions in Ad,n according to
how they start we have that

an = a(n, 0) + a(n, 1) + a(n, 2) + . . . + a(n, d− 1)
= an−2 + an−3 + . . . + an−d−1,

for n ≥ d + 1. For n < d, an equals the number of compositions with 1s and
2s, that is, an = Fn+1 (see Example 2.9). For n = d, ad = Fd+1−1 as we have
to exclude the composition consisting of all 1s. Setting up the recurrence for
the generating function A(x) gives

A(x) −
d∑

j=0

Fj+1x
j + xd =

x2

(

A(x) −
d−2∑

j=0

Fj+1x
j

)

+ x3

(

A(x) −
d−3∑

j=0

Fj+1x
j

)

+ · · ·+ xd+1A(x),

which gives

(1− x2 − x3 − · · · − xd+1)A(x) = −xd +
d∑

j=0

Fj+1x
j −

d∑

i=2

xi
d−i∑

j=0

Fj+1x
j .
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Rearranging the double sum and using Exercise 2.7 gives

d∑

i=2

xi
d−i∑

j=0

Fj+1x
j =

d∑

j=2

xj

(
j−1∑

i=1

Fj

)

=
d∑

j=2

xj (Fj+1 − 1) .

Therefore

A(x) =
1 + x + · · ·+ xd−1

1− x2 − x3 − · · · − xd+1
,

which reduces to the generating function for Exercise 2.14 for d = 2.

Exercise 2.16 Derive a recurrence relation for the Bell numbers Bn (see
Definition 2.59).

Solution 2.16 We count the number of partitions of a set of n + 1 elements
according to the size of the set containing the (n+1)-st element. If the set has
size j for 1 ≤ j ≤ n + 1, then there are

(
n

j−1

)
choices for the n other elements

of that set. The remaining n + 1 − j elements can be partitioned in Bn+1−j

ways. Thus,

Bn+1 =
n+1∑

j=1

(
n

j − 1

)

Bn+1−j =
n+1∑

j=1

(
n

n + 1− j

)

Bn+1−j

=
n∑

k=0

(
n

k − j

)

Bk.

Exercise 2.17 A smooth word is a word in which the difference between
any two adjacent letters is either −1, 0 or 1. Find an explicit formula for
the generating function for the number of smooth words of length n on the
alphabet [3]. Use either Maple or Mathematica to find an explicit formula for
the number of smooth words of length n on the alphabet [3].

Solution 2.17 Let f(x) be the generating function for the number of smooth
words of length n on the alphabet [3]. Then

f(x) = 1 + f(1|x) + f(2|x) + f(3|x),

where f(i|x) is the generating function for the number of smooth words of
length n on the alphabet [3] such that the first letter is i. It is not hard
to see that f(2|x) = xf(x), f(1|x) = x + xf(2|x) + xf(1|x), and f(3|x) =
x + xf(2|x) + xf(3|x), which implies that

f(1|x) = f(3|x) =
x

1− x
+

x2

1− x
f(x).

Thus f(x) satisfies

f(x) = 1 + xf(x) + 2
x

1− x
+ 2

x2

1− x
f(x),
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which implies that f(x) =
1 + x

1− 2x− x2
. Therefore, the number of smooth

words of length n on the alphabet [3] is given by

1
2

(
(1 +

√
2)n+1 + (1−

√
2)n+1

)
.

This explicit formula can be found by using either the Maple code

with(genfunc):

rgf_expand((1+x)/(1-2*x-x^2), x, n);

or the Mathematica code

SeriesCoefficient[(1+x)/(1-2x-x^2),{x,0,n}]

Exercise 2.18 A strictly smooth word is a word in which the difference be-
tween any two adjacent letters is either −1 or 1. Find an explicit formula
for the generating function for the number of strictly smooth words of length
n on the alphabet [3]. Use either Mathematica or Maple to find an explicit
formula for the number of strictly smooth words of length n on the alphabet
[3].

Solution 2.18 Let f(i|x) be the generating function for the number of strictly
smooth words of length n on the alphabet [3] such that the first letter is i.
Using arguments similar to those in the solution of Exercise 2.17 we get that
the generating function f(x) for the number of strictly smooth words of length
n on [3] satisfies

f(x) = 1 + f(1|x) + f(2|x) + f(3|x)

where f(2|x) = x + xf(1|x) + xf(3|x), f(1|x) = x + xf(2|x) and f(3|x) =

x + xf(2|x). This implies that f(2|x) =
x + 2x2

1− 2x2
and therefore

f(x) = 1 + 2x + (1 + 2x)f(2|x) =
(1 + x)(1 + 2x)

1− 2x2
,

from which we obtain that the number of strictly smooth words of length n
on [3] is given by

4 + 3
√

2
4

√
2

n
+

4− 3
√

2
4

(−
√

2)n.

This explicit formula can be obtained by using the Maple code

with(genfunc):

rgf_expand((1+x)*(1+2*x)/(1-2*x^2), x, n);

or the Mathematica code

SeriesCoefficient[(1+x)(1+2x)/(1-2x^2),{x,0,n}]//Simplify
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Note that sometimes the answers given by Maple or Mathematica have to be
“massaged” a bit to result in a nice formula.

Exercise 2.19 Find an explicit formula for the generating function for the
number of smooth compositions (see Exercise 1.12) of n with parts in [3].

Solution 2.19 Let f(x) be the generating function for the number of smooth
compositions of n with parts in [3]. Then

f(x) = 1 + f(1|x) + f(2|x) + f(3|x),

where f(i|x) is the generating function for the number of smooth compositions
of n with parts in [3] such that the first part is i. It is not hard to see that
f(2|x) = x2f(x), f(1|x) = x+xf(2|x)+xf(1|x), and f(3|x) = x3+x3f(2|x)+
x3f(3|x), which implies that

f(1|x) =
x

1− x
+

x3

1− x
f(x) and f(3|x) =

x3

1− x3
+

x5

1− x3
f(x).

Thus

f(x) =
(1 + x)(1 + x2)

1− x2 − 2x3 − x4 − x5
.

Exercise 2.20 Find an explicit formula for the generating function for the
number of strictly smooth compositions (see Exercise 1.12) of n with parts in
[3].

Solution 2.20 As in the solution to Exercise 2.19 we obtain that the gener-
ating function f(x) for the number of strictly smooth compositions of n with
parts in [3] is given by f(x) = 1 + f(1|x) + f(2|x) + f(3|x), but now f(2|x) =
x2 + x2f(1|x) + x2f(3|x), f(1|x) = x + xf(2|x), and f(3|x) = x3 + x3f(2|x).
This implies that f(2|x) = x2+x3+x5

1−x3−x5 . Hence

f(x) = 1 + x + x3 + (1 + x + x3)f(2|x) =
(1 + x2)(1 + x + x3)

1− x3 − x5
.

Exercise 2.21 A k-ary tree is a plane tree in which each vertex has either
out-degree 0 or k (see Definitions 7.2 and 7.20). A vertex is said to be internal
if its out-degree is k. Use the LIF to find an explicit formula for the number
of k-ary trees on n internal vertices.

Solution 2.21 Let h(x) be the generating function for the number of k-ary
trees with n internal vertices. The k-ary tree is either empty or there is
at least one internal vertex with k subtrees that are also k-ary trees. Thus
h(x) = 1 + xhk(x). To apply the LIF, let u(x) = h(x) − 1, φ(u) = (u + 1)k,
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and f(u) = u. Then the assumptions of Theorem 2.63 are satisfied, and the
Lagrange Inversion formula gives

[xn]u(x) =
1
n

[un−1](u + 1)kn =
1
n

(
kn

n− 1

)

=
1

1 + (k − 1)n

(
kn

n

)

.

Thus, the number of k-ary trees with n internal vertices is 1
1+(k−1)n

(
kn
n

)
for

n ≥ 1 (since h and u differ only by the constant term), and the formula also
holds for n = 0.

Exercise 2.22 Go to the On-Line Encyclopedia of Integer Sequences [21]
and look up the functional equation for the large Schröder numbers (sequence
A006318). Verify that it has the form of (2.11) and derive its continued
fraction form.

Solution 2.22 The generating function for the large Schröder numbers satis-
fies (1−x)S(x)−xS(x)2 = 1, which is equivalent to S(x) = 1+xS(x)+xS(x)2

and has the form of (2.11). Therefore, the generating function for the large
Schröder numbers can be written as

S(x) =
1

1− x− x

1− x− x

1− x− . . .

.

Exercise 2.23∗ Let fm,l(x, y) =
(

(1− x− y)m

(1− 2x− (1 − x)y)m+1

)

. Show that

[y�]fm,l(x, y) =
(1− x)�−m

(1 − 2x)�+1

∑

i≥0

(
� + i

i

)(
m

i

)
x2i

(1 − 2x)i
.

Hint: [y�]fm,l(x, y) =
(1− x)�

(1 − 2x)�
[y�]fm,l

(
x, (1−2x)

(1−x) y
)
.
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Solution 2.23 Let fm,l(x, y) =
(

(1 − x− y)m

(1− 2x− (1− x)y)m+1

)

. Then

[y�]fm,l(x, y) =
(1− x)�

(1− 2x)�
[y�]

⎡

⎢
⎢
⎢
⎣

(

1− x− (1− 2x)
(1− x)

y

)m

(

1− 2x− (1− x)
(1 − 2x)
(1− x)

y

)m+1

⎤

⎥
⎥
⎥
⎦

=
(1− x)�−m

(1− 2x)�+m+1
[y�]

[
((1− x)2 − (1− 2x)y)m

(1− y)m+1

]

=
(1− x)�−m

(1− 2x)�+m+1
[y�]

[
((1− 2x)(1 − y) + x2)m

(1− y)m+1

]

=
(1− x)�−m

(1− 2x)�+m+1
[y�]

⎡

⎣

(
(1− 2x) + x2

(1−y)

)m

(1− y)

⎤

⎦

=
(1− x)�−m

(1− 2x)�+m+1
[y�]

⎡

⎣
m∑

j=0

(
m

j

)
x2j(1− 2x)m−j

(1− y)j+1

⎤

⎦

=
(1− x)�−m

(1− 2x)�+1
[y�]

⎡

⎣
m∑

j=0

(
m

j

)
x2j

(1 − 2x)j

∑

i≥0

(
i + j

j

)

yi

⎤

⎦

=
(1− x)�−m

(1− 2x)�+1

m∑

j=0

(
m

j

)
x2j

(1 − 2x)j

(
� + j

j

)

.
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Compositions

Exercise 3.1 Let A(x, y, 	q) =
∑

n≥0

∑
σ∈Cn,m

xnym
∏∞

i=1 q
ri(σ)
i be the gen-

erating function for the number of compositions of n with ri parts of size i
and

∑
i ri = m. Prove that

A(x, y, 	q) =
1

1− y
∑∞

i=1 qixi
.

Solution 3.1 See the proof of Theorem 2.1 in [14].

Exercise 3.2 Let A(x, y, 	q) =
∑

n≥0

∑
σ∈Pn,m

xnym
∏∞

i=1 q
ri(σ)
i be the gen-

erating function for the number of palindromic compositions of n with ri parts
of size i and

∑
i ri = m. Prove that

A(x, y, 	q) =
1 + y

∑∞
i=1 qix

i

1− y2
∑∞

i=1 q2
i x2i

.

Solution 3.2 See the proof of Theorem 2.6 in [14].

Exercise 3.3∗ Find an explicit formula for
CN\{1}(n)

CN(n)
and determine its limit

when n→∞.

Solution 3.3 The number of compositions of n with m parts in N\{1} is the
same as the number of compositions of n−m with m parts in N (by adding
1 to each part). Thus

CN\{1}(n)
CN(n)

=
∑n

m=1 CN(m; n−m)
CN(n)

.

Using Theorem 3.3 we get that

CN\{1}(n)
CN(n)

=

∑n
m=1

(
n−m−1

m−1

)

2n−1
=

Fn−1

2n−1
,

where Fn is the n-th Fibonacci number. Since Fn−1 = 1√
5
(αn−1−βn−1) with

1 < α < 2 and |β| < 1, the ratio tends to zero as n→∞.

23
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Exercise 3.4 Find the generating function for the number of compositions
of n with m parts in N in which no part is unique (or equivalently, every part
appears at least twice). (Hint: use the exponential generating function for y,
that is, f(x, y) =

∑
m≥0 f(m; x)ym

m! , where f(m; x) is the ordinary generating
function for the number of compositions with m parts in which no part is
unique.)

Solution 3.4 Let fk(m; x) be the generating function for the number of com-
positions of n with m parts in [k] in which no part is unique. Then, enumer-
ating according to the number of parts k, we obtain

fk(m; x) =
∑

j �=1

(
m

j

)

fk−1(m− j; x)xkj .

Now let fk(x, y) =
∑

m≥0 fk(m; x)ym/m!, then

fk(x, y) =
∑

m≥0

m∑

j=0

(
m

j

)

fk−1(m− j; x)xkj ym

m!

−
∑

m≥0

(
m

1

)

fk−1(m− 1; x)xk ym

m!
.

Changing the order of summation for the first sum and re-indexing both sums
gives that

fk(x, y) = (exky − xky)fk−1(x, y).

Using induction on k with f0(x, y) = 1, we obtain that

fk(x, y) =
k∏

j=1

(exjy − xjy).

The number of compositions of n with m parts in N in which no part is unique
can then be obtained as the coefficient of xnym/m! in the generating function
fk(x, y).

Exercise 3.5 A composition σ is said to be odd-Carlitz (respectively, even-
Carlitz) if it is Carlitz and all its parts are odd (respectively, even) numbers.
Prove that

(1) the generating function for the number of odd-Carlitz compositions of
n with m parts in N is given by

1

1−∑
i≥0

x2i+1y

1 + x2i+1y

;
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(2) the generating function for the number of even-Carlitz compositions of
n with m parts in N is given by

1

1−∑
i≥0

x2i+2y

1 + x2i+2y

.

Solution 3.5 Let

f(x, y) =
∑

σ

xord(σ)ypar(σ) and g(x, y) =
∑

σ

xord(σ)ypar(σ),

where the sum is over all odd-Carlitz and even-Carlitz compositions, respec-
tively. Let σ = σ1 · · ·σm be any composition with m parts. Note that σ
is an even-Carlitz composition of n if and only if (σ1 − 1) · · · (σm − 1) is an
odd-Carlitz composition of n−m, thus g(x, y) = f(x, xy).

Let f(i|x, y) be the generating function for the number of odd-Carlitz com-
positions σ of n with m parts in N that start with i. Clearly, f(x, y) =
1 +

∑
i≥0 f(2i + 1|x, y). It is not hard to see that

f(2i + 1|x, y) = x2i+1y
∑

j �=i

f(2j + 1|x, y)

= x2i+1yf(x, y)− x2i+1yf(2i + 1|x, y),

or equivalently, f(2i + 1|x, y) =
x2i+1y

1 + x2i+1y
f(x, y). Hence, the generating

function f(x, y) is given by

f(x, y) =
1

1−∑
i≥0

x2i+1y

1 + x2i+1y

,

which implies that

g(x, y) =
1

1−∑
i≥0

x2i+2y

1 + x2i+2y

.

Exercise 3.6 Prove that the generating function for the number of palin-
dromic Carlitz compositions of n with m parts is given by

CP (x, y) =
∑

m≥0

CP (m; x)ym = 1 +

∑
i≥1

xiy

1 + x2iy2

1−∑
i≥1

x2iy2

1 + x2iy2

.
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Solution 3.6 Let CP (i|x, y) be the generating function for the number of
palindromic Carlitz compositions of n with m parts in N that start with i.
Clearly, CP (x, y) = 1 +

∑
i≥1 CP (i|x, y). Then

CP (i|x, y) = xiy + x2iy2
∑

j �=i

CP (j|x, y)

= xiy + x2iy2CP (x, y)− x2iy2CP (i|x, y)− x2iy2,

or equivalently,

CP (i|x, y) =
xiy

1 + x2iy2
+

x2iy2

1 + x2iy2
CP (x, y)− x2iy2

1 + x2iy2
.

Thus by CP (x, y) = 1 +
∑

i≥1 CP (i|x, y) we obtain that
⎛

⎝1−
∑

i≥1

x2iy2

1 + x2iy2

⎞

⎠ (CP (x, y)− 1) =
∑

i≥1

xiy

1 + x2iy2
.

Hence the generating function CP (x, y) is given by

CP (x, y) = 1 +

∑
i≥1

xiy

1 + x2iy2

1−∑
i≥1

x2iy2

1 + x2iy2

.

You may check that letting y = 1 gives the result of Theorem 3.9, namely

CP (x, 1) = 1 +

∑
i≥1

xi

1 + x2i

1−∑
i≥1

x2i

1 + x2i

.

Exercise 3.7

(1) Find an explicit formula for the number of times the summand k occurs
in all palindromic compositions of n with parts in N.

(2) More generally, for any ordered subset A of N, find the generating func-
tion for the number of times that the coefficient ai occurs in all palin-
dromic compositions with parts in A.

Solution 3.7 (1) See [5, Theorem 6].

(2) See [6, Theorem 1.4]

Exercise 3.8 Find an explicit formula for the number of Carlitz words (words
in which no two adjacent letters are the same) of length n on the alphabet
[k].



Compositions 27

Solution 3.8 Once we choose the first letter in the Carlitz word, we have
k − 1 possibilities for each letter that follows (namely any letter that is not
equal to the letter that preceded it). Altogether, there are k(k−1)n−1 Carlitz
words.

Exercise 3.9 Derive the generating function for the number of rises in all
compositions with parts in {1, 2} from the recurrence relation given in Theo-
rem 3.11.

Solution 3.9 Multiplying the recurrence relation

r(n + 1) = r(n) + r(n− 1) + Fn−1

by xn+1, summing over all n ≥ 1 and re-indexing the sums as necessary we
get that

∑

n≥2

r(n)xn = x
∑

n≥1

r(n)xn + x2
∑

n≥0

r(n)xn + x2
∑

n≥0

Fnxn.

Using the initial conditions r(1) = r(0) = 0 and the generating function for
the Fibonacci sequence from Example 2.29 yields

(1− x− x2)
∑

n≥0

r(n)xn = x2
∑

n≥0

Fnxn =
x3

1− x− x2
,

which implies that the generating function for the sequence {r(n)}n≥0 is given
by

∑

n≥0

r(n)xn =
x3

(1− x− x2)2
.

Exercise 3.10 Fill in the details of the proof of Part (2) of Theorem 3.12.

Solution 3.10 The general solution is of the form h(n) + p(n) where h(n) =
c1α

n + c2β
n and p(n) = c3nαn + c4nβn with α = 1+

√
5

2 and β = 1−√
5

2 . We
first substitute p(n) and Fn−1 = 1√

5
(αn−1−βn−1) into the recurrence relation

a(n + 1, 1) = a(n, 1) + a(n− 1, 1) + Fn−1

to obtain that

c3(n + 1)αn+1 + c4(n + 1)βn+1

= c3nαn + c4nβn + c3(n− 1)αn−1 + c4(n− 1)βn−1 + αn−1−βn−1
√

5
,

or equivalently,

c3nαn−1(α2 − α− 1) + c4nβn−1(β2 − β − 1)
+c3α

n−1(α2 + 1) + c4β
n−1(β2 + 1) = αn−1−βn−1

√
5

.
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Because α2 − α− 1 = β2 − β − 1 = 0 we obtain that

c3α
n−1(α2 + 1) + c4β

n−1(β2 + 1) =
αn−1 − βn−1

√
5

,

which is equivalent to

αn−1(c3α
2 − 1√

5
+ c3) + βn−1(c4β

2 +
1√
5

+ c4) = 0

for all n ≥ 1. Therefore,

c3α
2 − 1√

5
+ c3 = c4β

2 +
1√
5

+ c4 = 0.

Solving for c3 and c4 gives c3 =
√

5−1
10 and c4 = − 1+

√
5

10 . So we have

a(n, 1) = c1α
n + c2β

n +
√

5− 1
10

nαn − 1 +
√

5
10

nβn.

Applying the initial conditions a(2, 1) = 2 and a(3, 1) = 3 results in a system
of two equations in the two unknowns c1 and c2 which can be solved using
the Mathematica code

a = (1 + Sqrt[5])/2; b = (1 - Sqrt[5])/2;

Solve[{2==c1*a^2+c2*b^2+(-1+Sqrt[5])/10*2a^2+(-1-Sqrt[5])/10*2b^2,

3==c1*a^3+c2*b^3+(-1+Sqrt[5])/10*3a^3+(-1-Sqrt[5])/10*3b^3},

{c1,c2}]//Simplify

which results in the output

{{c1->1-7/(5 Sqrt[5]),c2->1+7/(5 Sqrt[5])}}

as was to be shown.

Exercise 3.11 Write a program that uses the recursive creation described in
Theorem 3.12 to create the compositions of n with odd parts.

Solution 3.11 Here is a Mathematica program to do this. Individual com-
positions are represented by the ordered list of their parts. We start with the
initialization for the odd compositions of 1 and 2, namely the compositions 1
and 11.

OddComps[1]={{1}}; OddComps[2]={{1, 1}};

We define two functions, App1 and Inc, which either append a 1 to the
composition or increase the last element by 2.

App1[l_List]:=Append[l,1];

Inc[l_List]:=Append[Most[l], Last[l]+2];



Compositions 29

Now we can use the function Map to apply these functions to the list of
compositions of n− 1 and n− 2, respectively.

OddComps[n_]:=OddComps[n]=

Union[Map[App1, OddComps[n-1]], Map[Inc,OddComps[n-2]]]

Exercise 3.12 A composition σ = σ1 · · ·σm of n with m parts is said to be
limited if 1 ≤ σi ≤ ni for all i = 1, 2, . . . , n.

(1) Derive a formula for the generating function for the number of limited
compositions of n.

(2) Using Part (1), obtain a simple formula for the case ni = k for all i.

(3) Prove that the number of limited compositions of n is given by Fn+1

when ni = 2 for all i.

Solution 3.12 (1) Let Am(x) be the generating function for the number of
limited compositions of n with m parts. Then it is not hard to see that
Am(x) =

∏m
j=1(x + x2 + · · · + xnj ). Hence, the generating function for the

number of limited compositions of n is given by

An1,n2,...(x) = 1 +
∑

m≥1

Am(x) = 1 +
∑

m≥1

m∏

j=1

(x + x2 + · · ·+ xnj ). (*)

(2) Substituting ni = k in (*) we obtain that

Ak,k,...(x) = 1 +
∑

m≥1

(
x− xk+1

1− x

)m

=
1

1− x−xk+1

1−x

.

This gives the result of Theorem 3.13 for the set A = [k].
(3) Setting k = 2 in (*) we get that A2,2,...(x) = 1/(1 − x − x2). This is the
generating function for the sequence Fn+1 (see A.1) and we recover the result
of Theorem 3.10.

Exercise 3.13 Prove that the generating function for the number of compo-
sitions of n with exactly k odd parts is given by

xk(1− x2)
(1− 2x2)k+1

.

Solution 3.13 Let A(x, q) be the generating function for the number of com-
positions of n with k odd parts. Our goal is to determine [qk]A(x, q), the gen-
erating function for the number of compositions of n with a fixed number k of
odd parts. Since each composition is either empty or starts with an even part
or starts with an odd part we obtain that (after appropriate simplification)

A(x, q) = 1 +
(

x2

1− x2
+

qx

1− x2

)

A(x, q)


