
Chapter 2 Solutions
Section 2.1

1. Some possibilities:

(a) an = [a + b + (−1)n(b − a)]/2.
(b) an = [a + b + (−1)�(n+1)/2�(b − a)]/2,

an =
[
a + b + (a − b)

[
sin(nπ/2) − cos(nπ/2)

]
/2.

(c) an = [a + b + (−1)�(n−1)/3�(a − b)]/2.
(d) an = 1

2 (b + c − 2a)x2
n + 1

2 (b − c)xn + a, xn := sin
[
(n − 1)π/2

]
.

(e) an = 3 + (−1)�(n+1)/2� + [(−1)n − 1]/2.

2. x1 = a, xn = a + b − xn−1, n > 1.

3. (a) Since |(4n − 1)/(2n + 7) − 2| = 15/(2n + 7) < 8/n, choose any integer
N ≥ 8/ε.
(b) If n ≥ 6, |(2n2 − n)/(n2 + 3) − 2| = |n + 6|/(n2 + 3) ≤ 2n/n2 = 2/n.
Therefore, choose N ≥ min{6, 2/ε}.
(c) |(5

√
n + 7)/(3

√
n + 2) − 5/3| = 11/(9

√
n + 6) < 11/

√
n, so choose

any integer N ≥ (11/ε)2.
(d) For n ≥ 2, (n − 1)/(

√
n + 1) ≥ (n/2)/2

√
n =

√
n/4, so choose any

integer N ≥ 16M2.
(e) |(2 + 1/n)3 − 8| =

[
(2 + 1/n)2 + 2(2 + 1/n) + 4

]
/n ≤ 19/n, so choose

any integer N > 19/ε.

(f)
√

n + 2
n + 1 − 1 = 1√

n + 1(
√

n + 2 +
√

n + 1)
≤ 1

n
, so choose any integer

N > 1/ε.

4. The disjoint intervals (−3/2, −1/2) and (1/2, 3/2) each contain infinitely
many terms of the sequence. Therefore, no limit can exist.

5. Let r = pq−1, p, q ∈ Z, q > 0. For all n ≥ q, n!r ∈ Z hence sin(n!rπ) = 0.

6. The general term in the sequence may be written np−1(1 + n−2)p, which
tends to 1 if p = 1, 0 if p < 1, and +∞ if p > 1.

7. Let A = {x1, . . . , xp} and Aj = {n : an = xj}. One of these sets, say A1,
must have infinitely many members. Since |x1 − a| ≤ |x1 − an| + |an − a|
and an → a, letting n → +∞ through A1 shows that x1 = a. We may
therefore choose ε > 0 so that I := (a − ε, a + ε) contains no xj for j ≥ 2.
Let N ∈ N such that an ∈ I for all n ≥ N . For such n, an = a.
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8. (a) bn = (3an + 2bn − 3an)/2 → (c − 3a)/2.
(b) Let cn = 3anbn + 5a2

n − 2bn. Then

bn = (cn − 5a2
n)/(3an − 2) → (1 − 20)/(6 − 2) = −19/4.

9. (a) 2. (b)
√

a/b. (c) k/2. (d) b/2
√

a. (e) 1. (f) 1/2a. (g) −kak−1.
(h) a/k. (i) 0. (j) 0. (k) 1/2. (l) 1.

10. If |an| ≤ M for all n, then |anbn| ≤ M |bn| → 0.

11. Use −r ≤ an − bn ≤ r and 2.1.4.

12.
√

nan = (nan)(1/
√

n) → a · 0 = 0.

13. If a = 0, given ε > 0 choose N such that an < εk for all n ≥ N .
Suppose a > 0. Then there exists N such that an > 0 for all n ≥ N . By
Exercise 1.4.15,

|a1/k
n − a1/k| = |an − a|

( k∑
j=1

a1−j/k
n a(j−1)/k

)−1
→ 0,

since the expression inside the parentheses tends to

k∑
j=1

a1−j/ka(j−1)/k = ka1−1/k > 0.

Therefore, a
1/k
n → a1/k.

14. (a) Suppose first that r > 1. Set hn = r1/n − 1. Then hn > 0, and by
the binomial theorem, r = (1 + hn)n > nhn. Therefore, by the squeeze
principle, hn → 0. If r < 1 consider 1/r.
(b) Set hn = n1/n −1. Then n = (1+hn)n > n(n−1)h2

n/2, hence hn → 0.
(c) Set hn = (r + nk)1/n − 1. By the binomial theorem, for n ≥ k

r + nk = (1 + hn)n >
n(n − 1) · · · (n − k)hk+1

n

(k + 1)! >
(n − k)k+1hk+1

n

(k + 1)! ,

hence hn → 0.
(d) Use the inequality 2x/π ≤ sin x ≤ x, 0 ≤ x ≤ π/2, and the squeeze
principle.

15. Follows from the identities x = x+ − x−, x+ = (|x| + x)/2, and x− =
(|x| − x)/2.
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16. Let s = 1/|r| and h = s − 1. By the binomial theorem,

sn = (h + 1)n =
n∑

k=0

(
n

k

)
hk.

Since s > 1, each term in the sum is positive hence, for n > m,

sn >

(
n

m + 1

)
hm+1 = n(n − 1) · · · (n − m)

(m + 1)! hm+1 >
(n − m)m+1

(m + 1)! hm+1.

Therefore,

0 < |nmrn| = nm

sn
<

nm(m + 1)!
(n − m)m+1hm+1 = (m + 1)!

n(1 − m/n)m+1hm+1 .

Since the term on the right tends to 0 as n → +∞, the squeeze principle
implies that nmrn → 0.

17. an < ran−1 < r2an−2 < · · · < rn−1a1 → 0. For the example, take
an = 21/n.

18. Suppose first that a ∈ R. Given ε > 0, choose N such that |an − a| < ε/2
for all n > N . For such n,

∣∣∣∣
a1 + · · · + an

n
− a

∣∣∣∣ ≤
∣∣∣∣
(a1 − a) + · · · + (aN − a)

n

∣∣∣∣

+
∣∣∣∣
(aN+1 − a) + · · · + (an − a)

n

∣∣∣∣

≤
∣∣∣∣
(a1 − a) + · · · + (aN − a)

n

∣∣∣∣ + n − N

n

ε

2 .

The second term on the right in the last inequality is less than ε/2. Also,
there exists N ′ > N such that the first term is less than ε/2 for all
n ≥ N ′. For such n, |(a1 + · · · an)/n − a| < ε.

Now suppose an → +∞. Let M > 0 and choose N such that an > 4M
for all n > N . For such n,

a1 + · · · + an

n
= a1 + · · · + aN

n
+ aN+1 + · · · + an

n

≥ a1 + · · · + aN

n
+ 4(n − N)M

n
.

Choose N ′ > N such that
n − N

n
>

1
2 and a1 + · · · + aN

n
> −M

for all n ≥ N ′. For such n, (a1 + · · · + an)/n ≥ 2M − M = M .
The converse is false: consider an = (−1)n.
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19. Choose N such that an − a < ε for all n ≥ N . For such n,

0 ≤ min{a1, . . . , an} − a ≤ an − a < ε.

Therefore, min{a1, . . . , an} → a. The converse is false: consider an =
1 + (−1)n.

20. Given ε > 0, choose N such that |an|/n < ε for all n ≥ N . Then

bn := n−1 max{a1, . . . , an} = max{αn, βn},

where

αn := n−1 max{a1, . . . , aN }, βn = n−1 max{aN+1, . . . , an}

Choose N ′ > N such that |αn| < ε for all n ≥ N ′. For such n we also
have −ε < βn < ε, hence −ε < bn < ε.

If {an} is bounded below by c then

c/n ≤ an/n ≤ max{a1, . . . , an}/n.

Hence if (1/n) max{a1, . . . , an} → 0, then an/n → 0. The example
an = 1 − n shows that the converse is not generally true.

21. (xn
1 + · · · + xn

k )1/n = xk

[
(x1/xk)n + · · · + (xk−1/xk)n + 1

]1/n and

1 ≤
[
(x1/xk)n + · · · + (xk−1/xk)n + 1

]1/n ≤ k1/n → 1.

22. Suppose that c ≤ f(x) − x ≤ d for all x, so c + jx ≤ f(jx) ≤ djx.
Summing and using Exercise 1.5.4,

nc + xn(n + 1)/2 ≤
n∑

j=1
f(jx) ≤ nd + xn(n + 1)/2

hence

c/n + x(1 + 1/n)/2 ≤ (1/n2)
n∑

j=1
f(jx) ≤ d/n + x(1 + 1/n)/2.

Letting n → +∞, we obtain (a). Part (b) is proved similarly.

23. Let c = a1/a0 and r = −1/2. By induction, an+1

an
= crn

hence

an+1 =
(

an+1

an

)
. . .

(
a1

a0

)
a0 = a0c1+r+···rn

→ a0c1/(1−r) = a
1/3
0 a

2/3
1
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24. Given ε > 0 choose N such that |an+k − an − c| < ε for all n ≥ N . Let
n ≥ N +k and choose qn, rn ∈ Z such that n−N = qnk+rn, 0 ≤ rn < k
(division algorithm). Then qn = k−1(n − N − rn) → +∞ and

an − qnc =
qn∑

j=1

(
an−(j−1)k − an−jk − c

)
+ an−qnk

Since n − jk ≥ n − qnk ≥ N , the terms of the sum have absolute value
less than ε. Thus for all large n,∣∣∣∣

an

qn
− c

∣∣∣∣ = 1
qn

|an − qnc| < ε + an−qnk

qn
= ε + aN+rn

qn

so an/qn → c. Since an/n = (an/qn)(qn/n) and qn/n → 1, an/n → c.

Section 2.2
1. Since

a1/n

a1/(n+1) = a1/n(n+1) < 1 < b1/n(n+1) = b1/n

b1/(n+1) ,

a1/n is increasing and b1/n is decreasing. Each tends to 1 by Exer-
cise 2.1.14.

2. Since a < 1, an+1/(n + 1)k < an/nk. For large n, b > (n + 1)k/nk, hence
bn+1/(n + 1)k > bn/nk.

3. By results of Section 2.1,

an = a(1/n + nb)−1 → 0 and nan = a(1/n2 + b)−1 → ab−1.

The condition an+1 < an is equivalent to (n2 + n)b > 1, which holds
eventually. Similarly, (n + 1)an+1 > nan is equivalent to the inequality
(n + 1)2 > n2.

4. (xn
1 + · · · + xn

n)1/n = xn

[
(x1/xn)n + · · · + (xn−1/xn)n + 1

]1/n and
1 ≤

[
(x1/xn)n + · · · + (xn−1/xn)n + 1

]1/n ≤ n1/n → 1.

5. Let rn be any strictly increasing sequence converging to sup A. By the
approximation property, there exists a1 ∈ A with r1 < a1 ≤ sup A,
a2 ∈ A with r2 < a2 ≤ sup A and a2 ≥ a1, etc. In this way we obtain a
sequence a1 ≤ a2 ≤ · · · converging to sup A.

6. Suppose an is increasing. Then

bn+1 − bn = a1 + · · · + an+1

n + 1 − a1 + · · · + an

n

= n(a1 + · · · + an+1) − (n + 1)(a1 + · · · + an)
n(n + 1)

= nan+1 − (a1 + · · · + an)
n(n + 1) ≥ 0.
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7. Let f(x) = 1 + 1
2 + (1 + x)−1 = 3x + 4

2x + 3 . Then f : [1, 2] → [1, 2], f is

increasing and f(am) = am+2. Since a1, a2 ∈ [1, 2], an ∈ [1, 2] for all n.
Since a1 = 1, a2 = 3/2, a3 = 7/5 and a4 = 17/12, the inequalities

a2n+2 < a2n and a2n+1 > a2n−1

hold for n = 1. Assume they hold for n = k. Then

a2k+4 = f(a2k+2) < f(a2k) = a2k+2 and
a2k+3 = f(a2k+1) > f(a2k−1) = a2k+1

hence the inequalities hold for n = k + 1.
Since the sequences {a2n} and {a2n+1} are bounded and monotone,

the monotone convergence theorem implies that a2n → a and a2n+1 → b
for some a, b ∈ R. Letting n → +∞ in f(a2n) = a2n+2 gives f(a) = a.
Therefore, a =

√
2. Similarly, b =

√
2. Therefore, an →

√
2.

8. a1 =
√

r +
√

r >
√

r = a0, and if an > an−1 then

an+1 = an =
√

r + an >
√

r + an−1 > an

Therefore, by induction, {an} is strictly increasing. Also, a0 <
√

r + 1,
and if an <

√
r + 1 then

an+1 =
√

r + an <

√
r +

√
r + 1 <

√
r + 1.

Therefore, {an} is bounded above by
√

r + 1. By the monotone con-
vergence theorem, an → a for some a ∈ R. Letting n → +∞ in
an = √

r + an−1 produces a =
√

r + a, which has positive solution
a =

(
1 +

√
1 + 4r

)
/2.

9. For x > 0, x2 + r ≥ 2x
√

r hence (x + r/x)/2 ≥
√

r. Therefore, an ≥
√

r.
For x ≥

√
r, x2 + r ≤ 2x2 hence (x + r/x)/2 ≤ x. Therefore, an ≥ an+1.

By the monotone convergence theorem, an → a for some a ≥
√

r. Letting
n → +∞ in an = (an−1 + r/an−1)/2, yields a = (a + r/a)/2, which has
positive solution a =

√
r.

10. Let an := (1 − 1/n2)n = (1 − 1/n)(1 + 1/n). By Bernoulli’s inequality,
1−1/n ≤ an ≤ 1, hence an → 1 and so (1−1/n)n = an/(1+1/n)n → 1/e.

Alternatively,
[
1 − 1

n

]−n

=
[

n

n − 1

]n

=
[
1 + 1

n − 1

]n

=
[
1 + 1

n − 1

] [
1 + 1

n − 1

]n−1
,

which tends to e.
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11. Let x, y > 0. Since (x − y)2 ≥ 0, √
xy ≤ (x + y)/2, with strict equality

holding iff x �= y. Also, 0 < x < y implies √
xy > x and (x + y)/2 < y.

Now let Pn be the statement 0 < xn < xn+1 < yn+1 < yn. From
the above discussion, P0 is true, and Pn implies Pn+1. Therefore, the
sequences {xn} and {yn} are monotone and bounded. Let xn ↑ x and
yn ↓ y, so 0 < x ≤ y. Letting n → +∞ in

yn+1 − xn+1

(
= (xn + yn)/2 − √

xnyn

)
=

(√
yn −

√
xn

)2
/2

yields (√
y +

√
x

)(√
y −

√
x

)
= y − x =

(√
y −

√
x

)2
/2.

It follows that y = x.

Section 2.3
1. (a) 0, ±3/8. (b) 0, ±1. ±2. (c) ±4, ±6, ±12, ±14. (d) 0, 3, ±1.

2. For example, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, . . . , 1, 2, 3, n, . . ..

3. (a) e1/k. (b) e. (c) 0 (k ≥ 2). (d) ek/2. (e) e7/3.
For example, for (d)

a2/k
n =

(
1 + 1

2n + k

)2n+k (
1 + 1

2n + k

)−k

→ e.

4. By Bolzano-Weierstrass, there exists a convergent subsequence {ank
} of

{an}. Similarly, there exists a convergent subsequence {bnkj
} of {bnk

}.

5. If {an} lies in the set {x1, . . . , xn}, then one of the sets {n : an = xj} must
have infinitely many members and a subsequence may be constructed
from these.

6. Let {rn} be any strictly increasing sequence with limit r. Choose n1 such
that an1 > r1, n2 > n1 such that an2 > max{r2, an1}, and in general
choose nk > nk−1 such that ank

> max{rk, ank−1}.

7. We may assume that an → a ∈ R (otherwise take a subsequence). Either
an < a for infinitely many n or an > a for infinitely many n. Assume the
former. Choose n1 such that an1 < a. Since there are infinitely many n
for which an1 < an < a, we may choose n2 > n1 such that an1 < an2 < a,
etc.

8. Given ε > 0, choose N so that
∑∞

n=N |an+k − an| < ε. For m > n ≥ N ,

|amk − ank| ≤ |amk − a(m−1)k| + · · · + |a(n+1)k − ank| < ε.

Therefore, {ank}∞
n=1 is Cauchy.
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9. |an+1 − an| = |an − an−1|/2 = · · · = |a1 − a0|/2n hence for m > n

|am − an| ≤ |am − am−1| + · · · + |an+1 − an| < |a1 − a0|
∞∑

k=n

2−k.

Since the series converges, {an} is Cauchy.

10. Clearly an → 0 implies bn → 0. For the converse, note that

bn = 1
a−q

n + ap−q
n

≤ aq
n.

If 0 < q < p, then the sufficiency is false: Take an = n, q = 1/2 and
p = 1. Then bn =

√
n/(n + 1) → 0 but an → +∞.

11. For x ∈ I, choose n1 such that an1 ∈ (x − 1, x + 1), then choose n2 > n1
such that an2 ∈ (x − 1/2, x + 1/2), and in general choose nk > nk−1 such
that ank

∈ (x − 1/k, x + 1/k). Then ank
→ x.

For the example, take {an} to be an enumeration of the rationals.

12. First, choose a subsequence {bmk
} such that |bmk

− b| < 1/k. Then
choose n1 such that |an1 −bm1 | < 1, n2 > n1 such that |an2 −bm2 | < 1/2,
and in general choose nk > nk−1 such that |ank

− bmk
| < 1/k. Then

|ank
− b| < 2/k for all k so ank

→ b.

Section 2.4
1. (a) lim infn = −5/3, lim supn = 5/3.

(b) lim infn = 0, lim supn = +∞.
(c) lim infn = −14, lim supn = 14.
(d) lim infn = 1, lim supn = 4.
(e) lim infn = x + y − z, lim supn = −x + y + z.
(f) lim infn = ar2/(1 − r), lim supn = ar/(1 − r).
(g) lim infn = 0, lim supn = +∞.
(h) lim infn = −∞, lim supn = +∞.

2. (b) and (c): an = (−1)n, bn = (−1)n+1;
(f) and (g): an = 2 + (−1)n bn = 2 − (−1)n.

3. Follows from Exercise 1.4.6.

4. Follows from Exercise 1.4.6.

5. Follows from {ank
: k ≥ n} ⊆ {ak : k ≥ n}.

21

K22154_SM_Cover.indd   25 03/02/15   10:20 am



6. 0 < b − ε < bn < b + ε ⇒ an + b − ε < an + bn < an + b + ε ⇒

b − ε + lim sup
n→∞

an ≤ lim sup
n→∞

(an + bn) ≤ b + ε + lim sup
n→∞

an.

Now let ε → 0.

7. 0 < b − ε < bn < b + ε ⇒ an(b − ε) < anbn < an(b + ε) ⇒

b − ε) lim sup
n

an ≤ lim sup
n

anbn ≤ (b + ε) lim sup
n

an.

Now let ε → 0.

8. If ank
→ a := lim supn an, then |ank

| → |a|. Therefore, |a| is a limit point
of |an| and the result follows from 2.4.2. The sequence an = (−1)n − 1
shows that the inequalities may be strict.

9. For each N choose K so that {1, . . . , N − 1} ⊆ {nk : 1 ≤ k ≤ K − 1}.
Then k ≥ K ⇒ nk ≥ N hence

lim sup
k

ank
≤ sup

k≥K
ank

≤ sup
n≥N

an.

Letting N → +∞ yields lim supk ank
≤ lim supn an. A similar argument

verifies the reverse inequality.

10. Choose r so that lim infn bn > r > 0. Then, given ε > 0, there exists N
such that an > a/2 and bn > r, and

cn := (bn − 3an)(bn + 2an) = b2
n − anbn − 6a2

n < ε

for every n > N . Then bn − 3an = cn/(bn + 2an) < ε/(r + a), so
lim supn bn ≤ 3a.

11. We prove only the lim sup inequality. Clearly, we may assume that
� := lim supn an < +∞. Let bn = an − �. Then lim supn bn = 0 and we
must verify that

lim sup
n

1
n

n∑
j=1

bj ≤ 0. (†)

Let ε > 0 and choose k such that supn≥k bn < ε. Then

lim sup
n

1
n

n∑
j=1

bj ≤ lim sup
n

1
n

k∑
j=1

bj + lim sup
n

1
n

n∑
j=k+1

bj

≤ lim sup
n

n − k

n
ε = ε.

Since ε was arbitrary, (†) holds.
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12. Suppose that lim infn a
1/n
n < lim infn

an+1

an
. Choose r strictly between

these numbers and then choose N such that an/an−1 > r for all n > N .
For such n,

an > an−1r > an−2r2 > · · · > aN rn−N ,

hence
lim inf

n
a1/n

n ≥ lim inf
n

(a1/n
N r1−N/n) = r,

a contradiction. To evaluate limn n/(n!)1/n take an = nn/n! and calculate

an+1

an
=

(
n + 1

n

)n

→ e.
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