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1.15. (a) We expand the product:

[B(B�B)−1B�]2 = [B(B�B)−1B�] · [B(B�B)−1B�]

= B[(B�B)−1(B�B)(B�B)−1]B� by associativity

= B(B�B)−1B� by canceling out inverses.

(b) Again expanding the product,

(In×n −A)2 = In×n − 2A+A2

= In×n − 2A+A since A is idempotent

= In×n −A

(c) The inverse of 1
2In×n −A is 2In×n − 4A, since:

(
1

2
In×n −A

)
(2In×n − 4A) = In×n − 2A− 2A+ 4A2

= In×n − 2A− 2A+ 4A since A is idempotent

= In×n

(d) A�x = λ�x =⇒ A2�x = λA�x = λ2�x. But A2 = A, so A2�x = A�x = λ�x. Thus, λ�x = λ2�x =⇒ λ = λ2 =⇒
λ ∈ {0, 1}.

1.16. The product AB is of size n2. Obviously finding AB requires considering each element of AB at least once
(if nothing else, to write the result in memory!), already requiring O(n2) time even if each element of AB is
computed in O(1) time. The algorithms in the figure take O(n3) time to run due to the nested loops. Hence,
there is room for improvement, and indeed Strassen’s algorithm and several others achieve faster than O(n3)
asymptotic runtime, at least for large n.

1.17. Define �(�x) ≡ − ln p(�x). Since ln is monotonic, any local maximum of p(�x) is also a local maximum of �(�x).
Hence, �x∗ is a critical point of �(�x), implying ∇�(�x∗) = �0. Let H be the Hessian of � at �x∗. Then, near �x∗ we
can approximate:

− ln p(�x) = �(�x) ≈ �(�x∗) +
1

2
(�x− �x∗)�H(�x− �x∗) = − ln p(�x∗) +

1

2
(�x− �x∗)�H(�x− �x∗).

The first derivative term of the expansion vanishes since ∇�(�x∗) = �0. Exponentiating both sides shows

p(�x) ≈ const. · e− 1
2 (�x−�x∗)�(−H)(�x−�x∗).

Hence, a reasonable Gaussian approximation of p(�x) near �x∗ takes Σ = −H−1 and �µ = �x∗.

2.1. Depending on the processor, fixed-point arithmetic can be faster than floating-point since it can be carried
out on the ALU with integer-type operations without the need for dealing with an exponent. Fixed-point
arithmetic also can be applicable when the scale of numbers under consideration is known ahead of time, e.g.,
in financial software. Floating-point representations are more accurate, especially when values care on many
scales.

2.2. (a) (answers may vary) Rounding error can come from multiplication and division to find the value n from
the other variables. Discretization error can come from the representations of values from the sensors.
Modeling error can result from inaccuracies of the Ideal Gas Law and/or failure to account for secondary
factors like sensor noise or pollutants. Input error can result from using an inaccurate value of the constant
R.

(b) From the ideal gas law, we can write

n =
PV

RT
.

Then, if we measure P̄ and T̄ rather than the ground-truth values, we can write the forward error as:

∣∣∣∣
P̄ V

RT̄
− PV

RT

∣∣∣∣ =
V

R

∣∣∣∣
P̄

T̄
− P

T

∣∣∣∣
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=
V

R

∣∣∣∣
P + δP
T + δT

− P

T

∣∣∣∣ for |δP | ≤ εP , |δT | ≤ εT

=
V

R

∣∣∣∣
(P + δP )T − P (T + δT )

T (T + δT )

∣∣∣∣

=
V

RT

∣∣∣∣
PT + δPT − PT − δTP

T + δT

∣∣∣∣

= n

∣∣∣∣
δPT − PδT
P (T + δT )

∣∣∣∣

Hence, the relative forward error can be bounded as follows:

∣∣∣∣
δPT − PδT
P (T + δT )

∣∣∣∣ ≤
TεP + PεT
P (T − εT )

(c) In this case,

n =
PV

RT
=

(100 Pa)(0.5 m3)

(8.31 J ·mol−1 ·K−1)(300 K)
= 0.0201 mol

With the given measurement bounds, the largest possible value is

(101 Pa)(0.5 m3)

(8.31 J ·mol−1 ·K−1)(299.5 K)
= 0.0203 mol = n+ 0.000234 mol = n+ 1.17%.

The smallest possible value is

(99 Pa)(0.5 m3)

(8.31 J ·mol−1 ·K−1)(300.5 K)
= 0.0198 mol = n− 0.000234 mol = n− 1.17%.

Hence, the absolute error is bounded by 0.0198 mol and the relative error is bounded by 1.17%.

(d) At the range indicated by the problem, it is relatively well-conditioned. When the scale of εT is commen-
surate with that of T , the problem becomes ill-conditioned.

2.3. We can understand the relative error as the fraction

κrel =
|∆y|/|y|
|∆x|/|x|

=

∣∣∣∣
x∆y

y∆x

∣∣∣∣ ,

where y +∆y = f(x+∆x) and y = f(x). By Taylor’s theorem, f(x+∆x) = y + f ′(x)∆x+ O(∆x2). Hence,
∆y = f ′(x)∆x+O(∆x2), so for small ∆x,

κrel ≈
∣∣∣∣
x · f ′(x)∆x

f(x) ·∆x

∣∣∣∣ =
∣∣∣∣
xf ′(x)

f(x)

∣∣∣∣ .

The absolute condition number of this problem is:

∣∣∣∣
∆y

∆x

∣∣∣∣ ≈ |f ′(x)| .

The function f(x) = lnx has a large relative condition number near x = 1, since κrel = 1/ln x, which blows up
near x = 1. Contrastingly, the function f(x) = x has relative condition number 1 for all x.

2.4. Since minima are roots of f ′, we can use the conditioning for root-finding, but with an extra derivative:

(a) |xest − x∗|
(b) |f ′(xest)− f ′(x∗)| ≈ δx|f ′′(x∗)|
(c) 1/|f ′′(x∗)|

2.5. (a) The range is (−∞, 0] since limt→0 log t = −∞ and log 1 = 0.

(b) If the xk is very negative, then exk is exponentially close to zero. This near-zero value may not be repre-
sentable, and regardless a single slightly larger value will dominate the sum.
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(c) We simplify directly:

�(x1, . . . , xn) = ln

[∑
k

exk

]
by definition

= ln

[∑
k

exk−a+a

]

= ln

[
ea

∑
k

exk−a

]

= ln ea + ln

[∑
k

exk−a

]

= a+ ln

[∑
k

exk−a

]

Suppose we take a = mink xk. Then, rather than adding together tiny values we have moved the scale to
be around e0 = 1. (Other heuristics for choosing a are possible)

2.6. There are rendering artifacts because the two surfaces overlap and hence have the same depth values; rounding
during depth computation can make one surface appear on top of the other. Possible resolutions include
slightly offsetting one surface, adding a tie-breaking rule when depths are within some tolerance of each other,
or merging the geometry before rendering to avoid overlap altogether.

2.7. (a) Recall that floating point arithmetic changes spacing as the order of magnitude of the value changes. Thus,
it makes sense to have multiplicative error that is relative to the scale of x and y.

(b) (adapted from course notes by D. Bindel, Cornell CS) The recurrence for the ground-truth sum is simply
sk = sk−1 + xkyk. Error terms for the addition and multiplication steps show

ŝk = (ŝk−1 + xkyk(1 + ε×k ))(1 + ε+k ).

Subtracting the two shows:

ŝk − sk = [(ŝk−1 + xkyk(1 + ε×k ))(1 + ε+k )]− [sk−1 + xkyk] by the recurrences above

= [ŝk−1 + ε+k ŝk−1 + xkyk(1 + ε×k ) + xkykε
+
k (1 + ε×k )]− [sk−1 + xkyk]

= [ŝk−1 − sk−1] + ε+k ŝk−1 + xkyk(ε
×
k + ε+k + ε+k ε

×
k )

= [ŝk−1 − sk−1](1 + ε+k ) + ε+k sk−1 + xkyk(ε
×
k + ε+k + ε+k ε

×
k )

= [ŝk−1 − sk−1](1 + ε+k ) + ε+k sk + xkyk(ε
×
k + ε+k ε

×
k ) since sk = sk−1 + xkyk

= [ŝk−1 − sk−1](1 + ε+k ) + ε+k sk + xkykε
×
k + xkykε

+
k ε

×
k

We can expand this inductively:

ŝ0 − s0 = 0

ŝ1 − s1 = [ŝ0 − s0](1 + ε+1 ) + ε+1 x1y1 + x1y1ε
×
1 + x1y1ε

+
1 ε

×
1

= x1y1(ε
+
1 + ε×1 ) + x1y1ε

+
1 ε

×
1

ŝ2 − s2 = [ŝ1 − s1](1 + ε+2 ) + ε+2 (x1y1 + x2y2) + x2y2ε
×
2 + x2y2ε

+
2 ε

×
2

= [x1y1(ε
+
1 + ε×1 ) + x1y1ε

+
1 ε

×
1 ](1 + ε+2 ) + ε+2 (x1y1 + x2y2) + x2y2ε

×
2 + x2y2ε

+
2 ε

×
2

= x1y1(ε
+
1 + ε×1 + ε+1 ε

+
2 + ε×1 ε

+
2 + ε+2 ) + x2y2(ε

+
2 + ε×2 ) + [x1y1ε

+
1 ε

×
1 + x2y2ε

+
2 ε

×
2 ] +O(ε3max)

...

Applying induction, this recurrence shows

ŝk − sk =

k∑
i=1


xiyi


ε×i +

k∑
j=i

ε+j




+O(kε2max)

=⇒ en ≤ nεmax

∑
k

|xk||yk|+O(nε2max), as desired.

9781482251944_SM_Cover.indd   11 28/09/15   12:38 pm



6 �

2.8. For convenience, define d ≡ x−y. We’ll start by simplifying the numerator of relative error and then substitute:

(1 + εx)x− (1 + εy)y = (x− y) + (εxx− εyy)

= d+ εxd+ (εx − εy)y

=⇒ (1 + ε−)((1 + εx)x− (1 + εy)y) = (1 + ε−)(d+ εxd+ (εx − εy)y)

= (1 + ε−)d+ εx(1 + ε−)d+ (1 + ε−)(εx − εy)y

=⇒ E =

∣∣∣∣
(1 + ε−)((1 + εx)x− (1 + εy)y)− (x− y)

x− y

∣∣∣∣

=

∣∣∣∣
ε−d+ εx(1 + ε−)d+ (1 + ε−)(εx − εy)y

d

∣∣∣∣
=

∣∣∣ε− + εx(1 + ε−) + (1 + ε−)(εx − εy)
y

d

∣∣∣

This can be unbounded as d → 0.

2.9. (a) Implicitly differentiating the relationship 0 = f(x(ε)) + εp(x(ε)) with respect to ε shows

0 =
d

dε
[f(x(ε)) + εp(x(ε))]

= f ′(x(ε))x′(ε) + p(x(ε)) + εp′(x(ε))x′(ε) by the chain rule.

Substituting ε = 0 and using x∗ = x(0) shows

0 = f(x∗)x′(0) + p(x∗) =⇒ x′(0) = − p(x∗)

f(x∗)
.

(b) We differentiate

f ′(x) =
d

dx
(x− 1) · (x− 2) · · · · · (x− 20)

= (x− 2) · · · · · (x− 20) + (x− 1) · (x− 3) · · · · · (x− 20)

+ · · ·+ (x− 1) · · · · · (x− 19) by the product rule

Substituting x = j shows

f ′(j) = (j − 1) · (j − 2) · · · · · (j − (j − 1)) · (j − (j + 1)) · · · · · (j − 20)

For p(x) = x19, from the previous part we have

x′(j) = − j19

(j − 1) · (j − 2) · · · · · (j − (j − 1)) · (j − (j + 1)) · · · · · (j − 20)
= −

∏
k �=j

j

j − k
.

(c) x′(1) ≈ 8.2× 10−18 and x′(20) ≈ −4.3× 107; hence, the root x∗ = 1 is far more stable.

2.10. (a) The alternative formula can be obtained by scaling the numerator and denominator of the quadratic
equation:

−b±
√
b2 − 4ac

2a
=

−b±
√
b2 − 4ac

2a
· −b∓

√
b2 − 4ac

−b∓
√
b2 − 4ac

=
b2 − (b2 − 4ac)

−2ab∓ 2a
√
b2 − 4ac

=
4ac

−2ab∓ 2a
√
b2 − 4ac

=
−2c

b±
√
b2 − 4ac
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(b) When b ≤ 0, take

x1 =
−b+

√
b2 − 4ac

2a
, x2 =

c

ax1
,

and otherwise take

x2 =
−b−

√
b2 − 4ac

2a
, x2 =

c

ax2
.

This way, there never can be cancellation because we always move b farther from the origin in the numer-
ator.

2.11. The bounds are worked out below:

[x] + [y] = [x+ y, x+ y]

[x]− [y] = [x− y, x− y]

[x]× [y] =





value sign(x) sign(x) sign(y) sign(y)[
xy, xy

]
+ + + +[

xy, xy
]

+ + − +[
yx, yx

]
+ + − −

[xy, xy] − + + +[
min(xy, yx),max(xy, xy)

]
− + − +[

xy, xy
]

− + − −[
xy, xy

]
− − + +

[xy, xy] − − − +[
xy, xy

]
− − − −

[x]÷ [y] = [x]×
[
1

y
,
1

y

]

[x]1/2 = [x1/2, x1/2]

In finite-precision arithmetic, always round down the lower bounds and round up the upper bounds.

2.12. (a) Perturbing any of three collinear points slightly makes them not collinear. Furthermore, points may appear
collinear if you zoom out far enough but appear less so as you zoom in.

(b)

ε

ε

ε

ε

ε

ε

�p

�q
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(c)

ε

ε

ε

ε

�p

�q

(d) Obvious from drawings above; ε-collinear points form the intersection of four half-planes, two of which
come from the ε-clockwise condition and two of which come from the ε-counterclockwise condition.

(e) No. See §3.1 of [55] for an example.

3.1. No; LU may not be possible for matrices requiring pivoting.

3.2. The steps of Gaussian elimination are below:

(
2 4 2
3 5 4

)
∼

(
1 2 1
3 5 4

)
, with elimination matrix

(
1/2 0
0 1

)

∼
(

1 2 1
0 1 −1

)
, with elimination matrix

(
1 0
3 −1

)

∼
(

1 0 3
0 1 −1

)
, with elimination matrix

(
1 −2
0 1

)

So, x = 3 and y = −1.

From the steps above, we know

U =

(
1 2
0 1

)
,

and

L =

(
1/2 0
0 1

)−1 (
1 0
3 −1

)−1

=

(
2 0
0 1

)(
1 0
3 −1

)
=

(
2 0
3 −1

)
.

3.3. Computed using Gaussian elimination:

L =




1 0 0
3 1 0
6 11 1


 U =




1 2 7
0 −1 −22
0 0 204




3.4. Where it states “optionally insert pivoting code here,” find row r with largest value in column p; then swap
row r and row p of both A and �b.

3.5. No. Full pivoting can be preferable numerically but technically does not make a difference. The only way partial
pivoting would fail is if there is an all-zero column, which would indicate that A is not invertible.

3.6. Write A = A1 +A2i, �b = �b1 +�b2i, and �x = �x1 + �x2i. Then, A�x = �b =⇒ (A1 +A2i)(�x1 + �x2i) = �b1 +�b2i =⇒
(A1�x1 −A2�x2) + (A2�x1 +A1�x2)i = �b1 +�b2i. So, we can solve the block system

(
A1 −A2

A2 A1

)(
�x1

�x2

)
=

(
�b1
�b2

)
.

3.7. Carrying out Gaussian elimination is the same as pre-multiplying by the inverse of the leftmost n × n block.
Hence, the output is A−1(A|In×n) = (A−1A|A−1) = (In×n|A−1).
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