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Chapter 2 Problem Solutions 
 

2.1   Show that, for a surface temperature of 5800 K, the sun will deliver 1367 W/m2 to the Earth.  This requires 

integration of the blackbody radiation formula over all wavelengths to determine the total available energy at 

the surface of the sun in W/m2.  Numerical integration is recommended.  Be careful to note the range of 

wavelengths that contribute the most to the spectrum.  Then note that the energy density decreases as the 

square of the distance from the source, similar to the behavior of an electric field emanating from a point 

source.  The diameter of the sun is 1.393109 m, and the mean distance from sun to Earth is 1.51011 m. 

 

Start by plugging the values of the various constants along with T = 5800 K into (2.1).  This gives 
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This expression must now be integrated over the interval 0 <  <  .  Since most of the spectral intensity 

appears in the wavelength range between 0.1 and 5 m, values for evaluating the expression must be carefully 

chosen if numerical integration is chosen.   The result of the integration is 
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Since this is the power density at the surface of the sun, the total power of the sun can be found by multiplying 

this power density by the surface area of the sun.  The result is 
 

P = (6.44107 W/m2)(4)(0.51.393109 m)2 = 3.9261026 W. 
 

This power is radiated uniformly in all directions.  The power density at the earth is thus found from the total 

power of the sun divided by the area of the sphere surrounding the sun with radius equal to the distance from 

the sun to the earth.  The result is 
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which compares nicely with the value 1367 W/m2 that results from the not-quite-perfect blackbody spectrum 

received by the earth. 

 

2.2   If the diameter of the sun is 1.393109 m, and if the average density of the sun is approximately 1.4 the 

density of water, and if  21019 kg/yr of  hydrogen is consumed by fusion, how long will it take for the sun to 

consume 25% of its mass in the fusion process? 

 

The density of 1.4 means the density of the sun is 1.4103 kg/m3 .  The mass of the sun thus computes to be 

1.9811030 kg.  Hence, 25% of the sun’s mass is 4.9531029 kg. 

Hence, (4.9531029 kg)(21019 kg/yr) = 24.76 billion years. 

 

2.3   Calculate the zenith angles needed to produce AM 1.5 and  AM 2.0 if AM 1.0 occurs at zero degrees.  

 

AM = AM(90o)csc  .  Thus, if AM(90o) = 1.0, then for AM = 1.5, csc= 1.5 and  = 41.81o. 

If   = 41.81o , then Z = 90   = 48.19o . 

For AM = 2,  sin = 0.5 so that   = 30o and Z = 90   = 60o. 

 

2.4   Calculate the zenith angle at solar noon at a latitude of 40o north on May 1. 

 

At solar noon, Z =    = 40o  






 

365

)80121(360
sin45.23 o

= 24.79o . 

 

2.5   Calculate the number of hours the sun was above the horizon on your birthday at your birthplace.  
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To find n to find , the date is needed.  Then the latitude of the birthplace is needed.  Finally, solving (2.8) 

gives 

5.7
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
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 hr . 

 

2.6 Calculate the irradiance of sunlight for AM 1.5 and for AM 2.0, assuming no cloud cover, using (2.2) and 

(2.3).  Then write a computer program that will plot irradiance vs. AM for 1  AM  10 for each equation. 

 

 

Equation (2.2) results in irradiance = 801 W/m2 for AM1.5 and irradiance = 670 W/m2 for AM2.0. 

Equation (2.3) results in irradiance = 855 W/m2 for AM1.5 and irradiance = 772.5 W/m2 for AM2.0. 

 

Irradiance vs. Air Mass using (2.2) 
 

Irradiance vs. Air Mass using (2.3) 

 

 

2.7 Assume no cloud cover, and, hence, that the solar irradiance is predominantly a beam component.  If a 

nontracking collector is perpendicular to the incident radiation at solar noon, estimate the irradiance on the 

collector at 1, 2, 3, 4, 5 and 6 hours past solar noon, taking into account air mass and collector orientation.  

Then estimate the total daily irradiation on the collector in kWh.  Assume AM 1.0 at solar noon and a latitude 

of 20 N. 

 

AM1.0 at solar noon means the sun is directly overhead, or   = 90o  and   = 0o.  This means the collector is 

horizontal.  Thus, to calculate the direct beam irradiation on the collector at 2, 3 and 4 hours past solar noon, it 

is necessary to calculate  at these times. 
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 To find   , (2.9) is used:   coscoscossinsinsin  

 At solar noon, the hour angle,  = 0.  Also if the sun is directly overhead,  =  so  = 90o. 

 Since -23.45o <  < 23.45o, it is necessary to choose a location to determine  .  If   = 20o N,  it is possible 

 to evaluate  for times when   0. 

 So, at 2 hours past solar noon,   = 30o and 8817.0)30cos(20cos20sinsin oo2o2   so  = 61.85o. 

Similarly, at 3 hours past solar noon,   = 47.85o, and at 4 hours past solar noon,  = 33.95o. 

Next, for the calculated solar altitudes, the air mass and then the irradiance need to be calculated.  Using (2.3), 

the following table can be generated for solar altitude, air mass, irradiance and the component of irradiance on 

the horizontal array, given by (Irradiance)(sin): 

 

Time sin , degrees AM 
Irradiance, 

W/m2 

Direct array 

component, W/m2 

Solar noon 1.0000 90 1.000 957 957 

noon + 1 0.9699 75.9 1.020 950 921 

noon + 2 0.8817 61.9 1.134 927 817 

noon + 3 0.7414 47.9 1.349 883 655 

noon + 4 0.5585 34.0 1.791 805 450 

noon + 5 0.3455 20.2 2.894 657 227 

noon + 6 0.1170 6.7 8.55 297 35 

 

An estimate of the total daily irradiation on the collector can then be made by summing the direct array 

components multiplied by appropriate time intervals.  Assuming the solar noon component from 11:30 a.m. 

to 12:30 p.m., the noon + 1 component from 12:30 to 1:30 p.m. and 10:30 to 11:30 a.m., the noon + 2 value 

from 1:30 to 2:30 p.m. and 9:30 to 10:30 a.m., etc., the approximate total output of the array due to the 

direct component of the incident sunlight over the 12-hour period becomes 

kWh/day = 0.957 + 2(0.921 + 0.817 + 0.655 + 0.450 + 0.227 + 0.035) = 7.167 . 

 

2.8 Write  a  computer  program using Matlab, Excel or something similar that will plot solar altitude vs. azimuth.  

Plot sets of curves similar to Figure 2.8 for the months of March, June, September and December for Denver, 

CO, Mexico City, Mexico, and Fairbanks, AK. 

 

The program needs to plot    and    as determined by (2.9) and (2.10), with appropriate values of   and    

for the months and the locations.  Note that since  reaches its maximum and minimum values on or about the 

21st of June and December, rather than at the 15th of the months, the curves for May and July, April and 

August, etc., will be slightly different. 

 

2.9   Using eq. (2.9 and 2.10), show that at solar noon, Z =  and  = 0. 

 

Start with equation (2.9) since it does not depend on .  Using some trigonometric identities, and =0 at solar 

noon gives: 

δ)cos(φcosφcosδsinsinδsinα)θsin(90cosθ ZZ  φ . 

This gives Z = ±().  Explain why it isn’t the negative. 

Now for equation (2.10).  Using the result from above, and a trigonometric identity, we have: 

cosαcosφsinαsinφα)cos(φ90)αsin(φ)θsin(φsinδ Z  . 

Plugging this value into equation 2.10 gives the answer. 
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2.10 Write a computer program that will generate a plot of solar altitude vs. azimuth for the 12 months of the year 

for your home town.  It would be nice if each curve would have time-of-day indicators. 

 

Appropriate choices need to be made for    and    for use of (2.9) and (2.10) again. 

 

 

2.11 Neglecting the analemma effect, calculate the time of day at which solar noon would occur at your longitude.  

Then compare the north indicated by a compass, corrected for compass declination, with the north indicated by 

a shadow at calculated solar noon and estimate the error in the shadow direction (i.e., solar noon) due to the 

analemma effect.  Estimate actual solar noon time on the basis of the difference between compass north and 

the shadow “north.” 

 

True north is in the direction of the shadow at solar noon in the northern hemisphere, provided that  > .  If  

< , then the shadow points directly south.  As noted in the text, neglecting the analemma effect, solar noon 

occurs at clock noon at longitudes that are multiples of 15o from Greenwich, England (with a few noted 

exceptions).  For other longitudes, solar noon is found from interpolation, where 15o = 60 minutes (i.e., 1 

hour), so 1o = 4 minutes = 1/15 hr.  For example, at 80o W, solar noon occurs at (8075)6015 = 603 = 20 

minutes past noon, clock time.   

The difference between true north and compass north is the compass declination, not to be confused with the 

declination of the sun, δ.  This difference is relatively small in eastern United States, but is in the range of 20 

in northwestern Canada.  Thus, north indicated by a compass must first be corrected to true north from a 

compass declination table. 

 Next, the direction of the shadow at calculated solar noon, neglecting the analemma effect, is compared with 

true north determined from the corrected compass reading.  Then, note that if the sun travels 15°/hr, if the 

shadow “north” is west of true (corrected compass) north, then solar noon has not yet occurred.  If the shadow 

“north” is east of true north, then the sun is west of south and solar noon has already happened.  Using the 

angular spacing between true north and shadow “north,” one can now estimate either the time until solar noon 

or the time elapsed since solar noon occurred.  

 

2.12  Noting the dependence of air mass on z,  

a. Generate a table that shows ,  and I (using 2.3) vs. time for a latitude of your choice on a day of your 

choice. 

b. Assuming a tracking collector and no cloud cover, estimate the total energy available for collection during 

your chosen day. 

 

The selection of latitude is to be made by the student.  This solution will use 30o N on March 21.  For this case, 

 = 30o and  = 0o.  Hence,  

 

 cos866.0cos30cos0cos30sin0sinsin oooo
  and 

 





 tan5774.0

coscos

sinsinsin
cos . 

 

 Now, using    






sin

1

sin

)90(AM
AM

o

   and   
678.0)AM()7.0(1367I     with   = 15(12T) for times when 

the sun is above the horizon enables the construction of a table of  I vs. T, which, when summed as  IT 

over daylight hours, gives the total irradiation per day incident on a tracking collector.  The results are 

tabulated in the following table. 
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T  sin   AM 
I, 

kW/m2 

cum I, 

kWh/m2 

6 90 0.0000 0.00 90.01 870319 0 0 

6.5 82.5 0.1130 6.49 86.24 8.847 286 0.07 

7 75 0.2241 12.95 82.37 4.462 511 0.27 

7.5 67.5 0.3314 19.36 78.30 3.017 643 0.56 

8 60 0.4330 25.66 73.90 2.309 729 0.90 

8.5 52.5 0.5272 31.82 69.01 1.897 788 1.28 

9 45 0.6124 37.76 63.44 1.633 831 1.69 

9.5 37.5 0.6870 43.40 56.91 1.456 863 2.11 

10 30 0.7500 48.59 49.10 1.333 886 2.55 

10.5 22.5 0.8001 53.14 39.63 1.250 903 2.99 

11 15 0.8365 56.78 28.17 1.195 914 3.45 

11.5 7.5 0.8586 59.16 14.72 1.165 920 3.91 

12 0 0.8660 60.00 0.00 1.155 923 4.37 

12.5 -7.5 0.8586 59.16 14.72 1.165 920 4.83 

13 -15 0.8365 56.78 28.17 1.195 914 5.29 

13.5 -22.5 0.8001 53.14 39.63 1.250 903 5.74 

14 -30 0.7500 48.59 49.10 1.333 886 6.19 

14.5 -37.5 0.6870 43.40 56.91 1.456 863 6.63 

15 -45 0.6124 37.76 63.44 1.633 831 7.05 

15.5 -52.5 0.5272 31.82 69.01 1.897 788 7.45 

16 -60 0.4330 25.66 73.90 2.309 729 7.83 

16.5 -67.5 0.3314 19.36 78.30 3.017 643 8.18 

17 -75 0.2241 12.95 82.37 4.462 511 8.47 

17.5 -82.5 0.1130 6.49 86.24 8.847 286 8.66 

18 -90 0.0000 0.00 90.01 870318.7 0 8.74 

 

2.13 Plot I vs. AM and then plot I vs. . 

 

The plots can be generated from the data from Problem 2.11 with the following results: 
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2.14 Calculate the collector orientation that will produce maximum summer output between 2 p.m. and 5 p.m. in 

Tucson, AZ.  Use July 21 as the assumed midpoint of summer and correct for the longitude of the site. 

 

The collector should face the sun at 3:30 p.m. (assume MDT) on July 21.  Hence, the sun position in Tucson, 

AZ is needed at 3:30 p.m. on July 21.  Note that on July 21, 3:30 p.m. is daylight savings time, or 2:30 p.m. 

standard time.   The longitude of Tucson is 110.9W, so solar noon occurs at 12:24, sun time.  Thus, 2:30 p.m. 

standard time is equivalent to 2:06 p.m. sun time.  For Tucson,   = 32.2o N and for July 21,   

o24.20
365

)80202(360
sin45.23 


   and   = 15(12T) = 15(1214.1) = 31.5o .  Hence, 

 coscoscossinsinsin  = 0.861  and  thus   = 59.5o. 

 

Next,  





coscos

sinsinsin
cos  = .188  so that    = 79.2o .  (Note negative since west of south.)  Hence, the 

collector is pointed close to west at an altitude of 59.5o.  As an interesting follow-up exercise, one might want 

to calculate the position without the longitude correction.  Another interesting follow-up is to note that Arizona 

is on pacific time instead of mountain time.  Thus, the problem could also be worked using 3:30 p.m. PDT, 

which is based on longitude of 120, rather than 105 for mountain time solar noon.  This means solar noon is 

at 11:24 a.m. rather than 12:24 p.m. PST.  Obviously the same procedures will be followed. 

 

2.15 Calculate the collector orientation that will produce maximum summer output at 9 a.m. Daylight Savings Time 

in Minneapolis, MN, using July 21 as the assumed midpoint of summer and using a longitude correction. 

 

Minneapolis, MN has   = 45o N and longitude = 93.3o W.  For July 21,   = 20.24o (See Problem 2.13).  To 

find how 9 a.m. CDT relates to solar noon, note that at  90o W, solar noon is at 1 p.m. CDT.  Hence, at 93.3o 

W, solar noon is 3.36015 = 13.2 minutes past the hour, or at 1:13 p.m.  This means that 9 a.m. CDT 

corresponds to 4 hr 13 min before solar noon.  (4 hr 13 min = 4.2167 hr)  Hence  T12 = 4.2167 hr and   = 

15(12T) = 63.25o .  Solving for   and  gives 

5432.0coscoscossinsinsin  and  thus   = 32.9o   and 

0643.
coscos

sinsinsin
cos 




  so that o316.86  East of South. 
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2.16 A collector in Boca Raton, FL ( = 26.4o N, longitude = 80.1 W) is mounted on a roof with a 5:12 pitch, 

facing 30o S of W.  Determine the time of day and days of the year that the direct beam radiation component is 

normal to the array. 

A roof with a 5:12 pitch has 
o1 62.22

12

5
tan  

.  Thus,  = 90   = 67.38o and  30o S of W corresponds to 

 = 60o.  For Boca Raton,  = 26.36o N with longitude of 80.08o W.  From this information it is necessary to 

determine   and  .  Equation (2.12) can be solved for sin.  The result is 

2375.0coscoscossinsinsin   and thus   = 13.74o. 

Next, (2.11) can be used to determine , with the result 

9394.0
coscos

sinsinsin
cos 




 and thus   = 20.05o (i.e., W of S). 

To find the days of the year that the sun shines directly onto the array, solve for the days for which   = 13.74o.  

This is done using (2.5), which gives the result 

o1 87.35
45.23

74.13
sin

365

)80n(360


  or 144.13o. 

For 35.87o, n = 116, corresponding to April 26.  For 144.13o, n = 226, corresponding to August 14. 

The time of day relative to solar noon for direct sun is found from (2.8), resulting in 3367.13
15

05.20
12T 

, which corresponds to 13 hr 20 min solar time.  To find when solar noon occurs at 80.08o W, note that solar 

noon occurs at  60
15

7508.80



= 20 minutes past the hour, i.e., at 12:20 p.m. EST, or at 1:20 p.m. EDT.  Since 

direct sun occurs 1 hr 20 min later, it occurs at 2:40 p.m. on April 26 and August 14. 

 

2.17 Determine the location (latitude and longitude) where, on May 29, sunrise is at 6:30 a.m. and sunset is at 8:08 

p.m. EDT.  At what time does solar noon occur at this location? 

Solar noon is halfway between sunrise and sunset.  Thus, solar noon is at 









60

8
205.6

2

1
 = 13.317 hr , 

which corresponds to 1:19 p.m. EDT.  From this information, the longitude can be determined to be 75o + 

.W75.7915
60

19 oo   

The declination on May 29 is found to be o75.21
365

)80149(360
sin45.23 


 .  

From sunrise to sunset, DH = 20.13336.500 = 13.633 hours on May 29. 

Finally, since DH is known to be 13.633, and  is known, (2.8) can be used to solve for the latitude. 

633.13
5.7

)tantan(cos
DH

1







, so that 531.0
399.0

212.0
tan  and thus   = 27.985o N. 

 

2.18 Using Figure 2.13, make a table of unshaded collector times for each month of the year. 

 

The line is drawn on the face of the Solar Pathfinder such that above the line represents shaded and below the 

line is unshaded.  Shaded or unshaded is determined by the reflection of shading objects from the face of the 

instrument.  Hence, the following table can be generated based on the position of the chalk/crayon line on the 

instrument face. 
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Month Unshaded times 

 

Month Unshaded times 

Jan 12:45 – 1:30 p.m. Jul 5:15 a.m. – 6:45 p.m. 

Feb noon – 2:00 p.m. Aug 5:30 a.m. – 6:30 p.m. 

Mar 9:30 a.m. – 2:45 p.m. Sep 9:15 a.m. – 3:15 p.m. 

Apr 5:30 – 6:30 a.m. & 8:30 a.m. – 6:30 p.m. Oct 10:00 a.m. – 2:15 p.m. 

May 5:15 a.m. – 6:45 p.m. Nov 12:30 – 1:30 p.m. 

Jun 5:00 a.m. – 7:00 p.m. Dec 12:45 – 1:15 p.m. 

 

 

2.19 An array of collectors consists of three rows of south-facing collectors as shown in Figure P2.1.   If the array is 

located at 40 N latitude, determine the spacing, d, between the rows needed to prevent shading of one row by 

another row. 

 

The smallest value of  over the year is needed for this problem.  If sunrise to sunset is considered, then  = 0 

and the spacing must be infinite.  Normally it is considered to be adequate if the collector is unshaded between 

9 a.m. and 3 p.m.  So this means that =45.  For either value of ,  will be the same.  The smallest value of 

 will occur when  = 23.45.  So for  = 40, 

sin = sin(23.45)sin40 + cos(23.45)cos40cos45 = 0.2411, so  = 13.95. 

Then, since tan = 3d, where d is the shadow length, d = 3tan = 12.07 ft.  But this shadow distance is 

measured from the projection of the high side of the module onto the roof toward the northwest, since the 

azimuth of the sun in the morning is toward the southeast.  So the value of  is also needed.  Using 2.10,  =  

42° (i.e., east of south). 

The distance between rows, d, is thus found from d = d cos = 8.97 ft.  

2.20 The top of a tree is found to be at an angle of 15 between the horizontal and the corner of a collector and at an 

azimuth angle of  30.  If the site is at a latitude of 30 N, determine the months (if any) when the tree will 

shade the array at the point from which the measurements are taken.  

 

This problem would most easily be solved with an instrument to calculate sun path.  But, of course, for an 

engineer, this would be too simple.  So the mathematical approach is used instead.  The problem is to 

determine whether the sun altitude dips below 15 when the azimuth is 30 during any month of the year.  So 

this means calculating the declination when the altitude, azimuth and latitude are known.  Solving (2.10) for 

the declination gives sin = sinsin  coscoscos.  Plugging in  = 15,  = 30 and  = 30 gives sin 

=  0.60 and thus  =  36.52.   Since   23.45 <  < 23.45, this means that the tree will never be a problem 

unless it grows taller.  For the curious person, it is interesting to calculate how tall the tree can grow before it 

becomes a problem, i.e., for what value of  is  =  23.45. 

 

2.21 A residence has a 5:12 roof pitch and is located at latitude 27N and longitude 83W, facing 15 west of south.  

If two rows of 66 cm x 142 cm collectors are to be mounted on the back roof so they will have a tilt of latitude, 

as shown in Figure P2.2,  

a.  How far apart will the rows need to be if collectors are to remain unshaded for 6 hours on December 21? 

b. Assuming Eastern Standard Time, over what time period on December 21 will the collectors be unshaded, 

assuming the collectors are facing 15 west of south. 

c.  Assuming no other shading objects, over what time period will the collectors be unshaded on March 21? 

 

a.  On December 21,  =  23.45. For 6 hours of unshaded operation, the collector will remain unshaded from 

9 a.m. to 3 p.m. sun time.  Thus, the altitude must be computed when  = 45 at the latitude of 27.  The fact 

that the collector is facing slightly west of south means that if the collector is not shaded at 9 a.m., then it will 

not be shaded at 3 p.m. so, in fact, the collector will receive a bit more than 6 hours of sun.  Using (2.9) to find 

 gives  = 23.4. 

Referring to Figure P2.2, note that   The 5:12 roof slope determines  = tan1(5/12) = 22.62.  This 

means that   = 0.78. 
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Next, note that  =  + = 49.62.  If the modules are mounted in landscape position, then sin = y/66 and 

cos = x/66 (x and y in cm).  So x = 42.8 cm and y = 50.3 cm. 

Finally, tan = y/(d-x), so d = 3737 cm = 37.37 m.  Hence, it is unlikely that the roof will be large enough to 

meet the spacing constraint. 

b.  As a first approximation, the collectors will be unshaded from 9 a.m. to 3 p.m. sun time if the spacing of 

part a can be achieved.  At a longitude of 83W, solar noon will occur at 12:32 p.m. EST, so the collectors will 

be unshaded from 9:32 a.m. to 3:32 p.m. 

c.  On March 21,  = 0, so if  = 23.4 and  = 27, then, using (2.11),  =  63.5.  This corresponds to 

unshaded hours 4.24 hr either side of solar noon, or from 7:46 a.m. to 4:14 p.m. sun time.  Correcting time for 

longitude, this results in unshaded hours from 8:18 a.m. to 4:46 p.m. 

 

2.22 A commercial building has a flat roof as shown in Figure p2.3.  The roof has a parapet around it that is 3 ft 

high, and an air conditioner located as shown that is 4 ft above the roof.  The building is located at 40 degrees 

north.  A PV system is to be installed using modules that measure 3 ft by 5 ft, in rows that will remain 

unshaded for at least 6 hours every day of the year.  The modules are to be mounted at a tilt of 25 degrees, in 

portrait mode, facing south.  The bottom edges of the modules will be 6 inches above the roof.   Determine the 

maximum number of modules that can be installed on the roof so that no module will be shaded during the 6-

hour period.  Pay attention to module rows shading other rows, shading from the air conditioner and shading 

from the parapet.  Draw a diagram that shows your result. 

   Since the modules are raised 6 inches above the roof, this problem can be solved by treating the modules as 

though their bottom edges are at ground (roof) level, the parapet is 2.5 ft tall, and the AC is 3.5 ft tall.   

It may be wise to first check that at least 6 hours of sunlight are available every day of the year.  The least 

amount of daylight hours occur when δ = 23.45°.  Using equation (2.8) it is found that the shortest day has 

about 9.15 hours of sunlight.  Hence the problem is reasonable.  It should also be clear that the desirable 

unshaded hours are from 9am – 3 pm solar time. 

To calculate the shadow length (and direction) for a given day and time it is necessary to find  and .  In the 

following table, using equations (2.6), (2.9), and (2.10) the required angles for the first day of winter, 

spring/fall, and summer can be found.  Also, since cosine is an even function, one must be careful to make sure 

the sign of the azimuth angles calculated are correct. 

Rather than calculate the shadow length of each side of the parapet, the modules, and the AC for each of the 3 

declinations, the shadow length of a pole 1 foot high will be found.  Then it is only necessary to multiply any 

of these shadow lengths by the actual height of our object to get the actual shadow length.  In the table, Length 

corresponds to the shadow length, N Length corresponds to the length of the shadow in the northern direction, 

and similarly for W Length ((N Length)2 + (W Length)2 = (Length) 2).  Length was found using (1ft)/tan, and 

for N Length and W Length, Length is multiplied by cos and sin respectively. 

  |------ Winter------| |----Fall/Spring----| |----- Summer------| 

TIME: ω α ψ α ψ α ψ 

9:00 45.00 13.95 41.95 32.80 57.27 48.83 80.19 

9:30 37.50 17.56 35.86 37.43 50.05 54.42 73.73 

10:00 30.00 20.66 29.36 41.56 41.93 59.82 65.83 

10:30 22.50 23.17 22.45 45.05 32.80 64.83 55.65 

11:00 15.00 25.03 15.19 47.73 22.63 69.17 41.89 

11:30 7.50 26.17 7.67 49.42 11.57 72.28 23.17 

12:00 0.00 26.55 0.00 50.00 0.00 73.45 0.00 

12:30 -7.50 26.17 -7.67 49.42 -11.57 72.28 -23.17 

1:00 -15.00 25.03 -15.19 47.73 -22.63 69.17 -41.89 

1:30 -22.50 23.17 -22.45 45.05 -32.80 64.83 -55.65 

2:00 -30.00 20.66 -29.36 41.56 -41.93 59.82 -65.83 

2:30 -37.50 17.56 -35.86 37.43 -50.05 54.42 -73.73 

3:00 -45.00 13.95 -41.95 32.80 -57.27 48.83 -80.19 
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Note that the largest shadow is given in the winter at 9am/3pm.  Thus, using 2.99 ≈ 3.00 and 2.69 ≈ 2.70 for N 

and W Lengths, the shadow caused by the parapet on the southern edge extends 3.00×2.5 ft = 7.5 ft in the 

northern direction.  Similarly, the east and west edges of the parapet cast a shadow extending 2.70×2.5 ft = 

6.75 ft in the west and east directions, respectively.  Noting that there are no negative N Lengths in the table, 

and thus no shadow directed southward, and hence the north side of the parapet can be ignored.  (Note, that 

even in cases where the latitude is greater than 23.45° it is possible to have a shadow extending in the southern 

direction.  In your spreadsheet replace the latitude of 40° to 25° to see this.  In fact, earlier and later in the day, 

shadows will have a south-pointing component as the sun is north of east and north of west). 

Subtracting these shadows (and for the moment ignoring the AC) gives an available roof space of 32.5 ft in the 

N/S direction and 56.55 ft in the W/E direction.  For this problem, assume that it is unnecessary to leave space 

between adjacent modules in the row.  Since 56.55ft/3ft = 18.85, note that it is possible to fit at most 18 

modules in a row.  Also, the height of the module is given by 5ft×sin25°=2.11 ft, and the length (in the N/S 

rom the height we get that the N/S shadow is 2.11ft×3 = 6.33 ft 

at the most.  Three rows would stretch, including shadows, 3×(4.53ft + 6.33ft) = 32.58ft.  It is thus possible to 

have at most 3 rows.  So, still ignoring the AC, a maximum of 3×18 = 54 modules will fit.  (Note that in 

portrait mode, there could be 4 rows of 11, which is less). 

One can quickly verify that the shadow extending northward from the AC is at most 10.5 ft.  This means the 

3rd row of modules can be placed to the very north of the roof without being affected by the AC.  Also, as is 

reasonable, if the 1st row is placed directly behind the parapet shadow, this means the 2nd row needs to be 

placed between (4.53ft + 6.33ft) = 10.86 ft and (40ft – 7.5ft – 10.86ft – 4.53ft) = 17.11 ft north of the first row.  

However, considering the AC shadow spreads out more as one moves more north of the AC, it should be clear 

that this 2nd row should be closer to the 1st row than to the 3rd.  This means the 2nd row will be 18.36 ft from 

the south side of the roof (7.5 ft due to parapet + 10.86 ft due to first row), or put differently, 0.86 ft north of 

the southern edge of the AC. 

Now, it may be possible to place a panel in a spot that shows shadow coverage.  This is because the shadow 

could pass underneath the raised module.  It is interesting to calculate exactly how close the module can be 

placed to the AC.  This can be done using 3d vectors.  Since the height of the AC is 3.5 ft, the shadow extends 

from any top corner of the AC at most 10.5 ft north, and 9.45 ft east or west.  In the 3d coordinate frame 

(x,y,z), let the SE top corner of the AC be represented by (0, 0, 3.5).  Then, considering x = east, and y = north, 

at 3pm on the first of winter, the shadow from this corner touches “ground” at (9.45, 10.5, 0).  This can be 

described as a shadow vector going from (0, 0, 3.5) to (9.45, 10.5, 0).  Likewise, the west side of the module 

touches ground x (where x is to be determined) feet away from the AC, and 0.86 feet north of the AC base to 

gives a coordinate of (x, 0.86, 0).  The module ends at (x, 5.392, 2.11).  Hence, the shadow vector is given by 

(9.45t, 10.5t, 3.5 – 3.5t) and the module vector can be given by (x, 0.86 + 4.53s, 2.11s).  Now, setting these 

               Shadow lengths for a one foot pole    
 WINTER FALL/SPR SUMMER 

TIME Length 

N 

Length 

W 

Length Length 

N 

Length 

W 

Length Length 

N 

Length 

W 

Length 

9:00 4.02 2.99 2.69 1.55 0.84 1.31 0.87 0.15 0.86 

9:30 3.16 2.56 1.85 1.31 0.84 1.00 0.72 0.20 0.69 

10:00 2.65 2.31 1.30 1.13 0.84 0.75 0.58 0.24 0.53 

10:30 2.34 2.16 0.89 1.00 0.84 0.54 0.47 0.27 0.39 

11:00 2.14 2.07 0.56 0.91 0.84 0.35 0.38 0.28 0.25 

11:30 2.04 2.02 0.27 0.86 0.84 0.17 0.32 0.29 0.13 

12:00 2.00 2.00 0.00 0.84 0.84 0.00 0.30 0.30 0.00 

12:30 2.04 2.02 -0.27 0.86 0.84 -0.17 0.32 0.29 -0.13 

1:00 2.14 2.07 -0.56 0.91 0.84 -0.35 0.38 0.28 -0.25 

1:30 2.34 2.16 -0.89 1.00 0.84 -0.54 0.47 0.27 -0.39 

2:00 2.65 2.31 -1.30 1.13 0.84 -0.75 0.58 0.24 -0.53 

2:30 3.16 2.56 -1.85 1.31 0.84 -1.00 0.72 0.20 -0.69 

3:00 4.02 2.99 -2.69 1.55 0.84 -1.31 0.87 0.15 -0.86 
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equal to each other the value of x can be determined, which is how close the module must be to the AC for the 

shadow to just touch it at 3pm.  This value is given by x ≈ 4.4 ft. 

Hence if the 2nd row is placed as far south as possible, modules can be placed no closer than 4.4 ft W or E of 

the AC unit.  This means to the east of the AC unit the space available is (17.5 ft – 6.75 ft – 4.4 ft) = 6.35 ft.  

This is enough room for 2 modules.  To the west of the AC unit, (47.5 ft – 6.75 ft – 4.4 ft) = 36.35 ft is 

available.  This is enough room for 12 modules.  Hence, 14 modules can be squeezed into the 2nd row.  This 

gives a total of 50 

modules.  So, the AC 

unit only cost 4 

modules. 

Note that a little bit of 

slack is available on the 

2nd row.  Hence the 

modules could be placed 

slightly further from the 

AC than the minimum 

of 4.4 ft, and also 

slightly more north than 

0.86ft from the base of 

the AC unit.  Doing this 

would give a little bit 

more than the 6 hours of 

sunlight daily. 

 

2.23  Using NREL SAM [5] for Miami, FL; Sacramento, CA; Boston, MA and Fairbanks, AK; create a table that 

shows the annual collection losses, in percent, for fixed-tilt collectors, compared to maximum collection when 

the collector is tilted at latitude.  Include tilt angles of latitude and latitude ±15.  If all that counts is total 

annual kWh, what generalizations can you offer with regard to array tilts? 

 

 

Ann kWh/kW 

for array fixed 

at latitude 

% loss for 

array fixed at 

latitude -15º 

% loss for 

array fixed at 

latitude +15º 

Miami 1465 2.3 3.1 

Sacramento 1533 5.5 0.0 

Boston 1362 0.7 4.5 

Fairbanks 993 (2.8)* 8.1 

 

The differences between the 3 fixed array tilts are not that large.  In one case (*) there is actually an 

improvement by tilting at –15º from latitude.  Since this 30º span doesn’t result in a lot of difference, it might 

be worth tilting at an angle different higher or lower than latitude if it is convenient otherwise.  In particular, 

placing modules flat on a roof that has a slope within 15º of latitude, rather than trying to tilt them to match 

latitude, which could be more costly due to material and/or labor costs, may be a good idea. 
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