Name \qquad

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) Write the first four terms of the sequence $a_{n}=n\left[9+8(-1)^{n}\right]$.
2) Find the general term of a sequence whose first four terms are $\frac{3}{5}, \frac{6}{6}, \frac{9}{7}, \frac{12}{8}$.
3) Write $\sum_{k=1}^{4} \frac{\mathrm{k}}{\mathrm{k}+13}$ without summation notation. Do not evaluate.
4) Write the following sum using summation notation: $\frac{1}{2}-\frac{2}{3} a+\frac{3}{4} a^{2}-\frac{4}{5} a^{3} \ldots+\frac{15}{16} a^{14}$
5) Find the 300 th term and the sum of the first 300 terms for the arithmetic sequence $8,11,14$,
6) Indicate by letter which of the following sequences can be the first three terms of an arithmetic sequence and state the common difference for those that are.
(A) $9,3,-3, \ldots$
(B) $2,6,10, \ldots$
(C) $5,8,12, \ldots$
7) Indicate by letter which of the following sequences can be the first three terms of a geometric sequence and state the common ratio for those that are.
(A) $1,-4,16, \ldots$
(B) $14,2, \frac{2}{7}, \ldots$
(C) $1,-8,-64, \ldots$
8) If a person borrows $\$ 13,200$ and agrees to repay the loan by paying $\$ 200$ per month to reduce the loan and 1% of the unpaid balance each month for using the money, what is the total cost of the loan over 66 months?
9) Evaluate: $\frac{46!}{38!8!}$
10) Expand: $(3 x+y)^{4}$
11) Find the sixth term in the expansion of $(p-2 q)^{12}$.
12) Evaluate: $\mathrm{C} 40,37$
13) Find the sum of the first 25 terms of the geometric sequence $250,250(1.05), 250(1.05)^{2}, \ldots$
14)
15)
16)
17)
18)
19) \qquad
20) \qquad
21) \qquad
22) \qquad
23) \qquad
24) \qquad
25)
26) \qquad
27) \qquad
28) Find the sum of the infinite geometric sequence (if it exists): $7, \frac{7}{5}, \frac{7}{25}, \ldots$
29) Find the sum of the infinite geometric sequence (if it exists): $4,-\frac{8}{3}, \frac{16}{9},-\frac{32}{27}, \ldots$
30) Find the sum of all the odd integers between 52 and 346.
31) Write the alternating series $-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}$ using summation notation with the summing index k starting at $\mathrm{k}=1$.
32) Find the 67 th term of the sequence defined by $a_{n}=\frac{n+3}{n-1}$.
33) Find the first five terms of the sequence defined by the recursive formula $a_{1}=2, a_{n}=$
34) \qquad
35) \qquad
36) \qquad
37) \qquad
38) \qquad
39) $4 a_{n}-1-1$ for $n \geq 2$.

Answer Key

Testname: UNTITLED14

1) $1,34,3,68$
2) $\frac{3 n}{n+4}$
3) $\frac{1}{14}+\frac{2}{15}+\frac{3}{16}+\frac{4}{17}$
4) $\sum_{k=1}^{15}(-1)^{n+1} \frac{\mathrm{n}}{\mathrm{n}+1} a^{n-1}$
5) $\mathrm{a} 300=905, \mathrm{~s} 300=136,950$
6) (A) Common difference $=-6 \quad$ (B) Common difference $=4$
7) (A) Common ratio $=-4 \quad$ (B) Common ratio $=\frac{1}{7}$
8) $\$ 4,422$
9) $260,932,815$
10) $81 x^{4}+108 x^{3} y+54 x^{2} y^{2}+12 x y^{3}+y^{4}$
11) $-25,344 p^{7} q^{5}$
12) 9,880
13) $11,931.77$
14) 1.18
15) $\frac{35}{4}=8.75$
16) $\frac{12}{5}=2.4$
17) 29,253
18) $\sum_{\mathrm{k}=1}^{5} \frac{(-1)^{\mathrm{k}}}{\mathrm{k}+1}$
19) $\frac{35}{33}$
20) $2,7,27,107,427$
