Chapter 1

Analyzing Algorithms and Problems: Principles and Examples

Section 1.2: Java as an Algorithm Language

1.1

It is correct for instance fields whose type is an inner class to be declared before that inner class (as in Figure 1.2 in the text) or after (as here). Appendix A. 7 gives an alternative to spelling out all the instance fields in the copy methods (functions).

```
class Personal
    {
    public static class Name
    {
    String firstName;
    String middleName;
    String lastName;
    public static Name copy (Name n)
            {
            Name n2;
            n2.firstName = n.firstName;
            n2.middleName = n.middleName;
            n2.lastName = n.lastName;
            return n2;
            }
    }
public static class Address
    {
    String street;
    String city;
    String state;
    public static Address copy(Address a) {/* similar to Name.copy() */ }
    }
public static class PhoneNumber
    {
    int areaCode;
    int prefix;
    int number;
    public static PhoneNumber copy(PhoneNumber n) {/* similar to Name.copy() */ }
    }
Name name;
Address address;
PhoneNumber phone;
String eMail;
public static Personal copy(Personal p);
    {
    Personal p2;
    p2.name = Name.copy(p.name);
    p2.address = Address.copy(p.address);
    p2.phone = PhoneNumber.copy (p.phone) ;
    p2.eMail = p.eMail;
    return p2;
    }
}
```


Section 1.3: Mathematical Background

1.2

For $0<k<n$, we have

$$
\begin{aligned}
& \binom{n-1}{k}=\frac{(n-1)!}{k!(n-1-k)!}=\frac{(n-1)!(n-k)}{k!(n-k)!} \\
& \binom{n-1}{k-1}=\frac{(n-1)!}{(k-1)!(n-k)!}=\frac{(n-1)!(k)}{k!(n-k)!}
\end{aligned}
$$

Add them giving:

$$
\frac{(n-1)!(n)}{k!(n-k)!}=\binom{n}{k}
$$

For $0<n \leq k$ we use the fact that $\binom{a}{b}=0$ whenever $a<b$. (There is no way to choose more elements than there are in the whole set.) Thus $\binom{n-1}{k}=0$ in all these cases. If $n<k,\binom{n-1}{k-1}$ and $\binom{n}{k}$ are both 0 , confirming the equation. If $n=k$, $\binom{n-1}{k-1}$ and $\binom{n}{k}$ are both 1 , again confirming the equation. (We need the fact that $0!=1$ when $n=k=1$.)

1.4

It suffices to show:

$$
\log _{c} x \log _{b} c=\log _{b} x
$$

Consider b raised to each side.

$$
\begin{aligned}
b^{\text {left side }} & =b^{\log _{b} c \log _{c} x}=\left(b^{\log _{b} c}\right)^{\log _{c} x}=c^{\log _{c} x}=x \\
b^{\text {right side }} & =b^{\log _{b} x}=x
\end{aligned}
$$

So left side $=$ right side.
1.6

Let $x=\lceil\lg (n+1)\rceil$. The solution is based on the fact that $2^{x-1}<n+1 \leq 2^{x}$.

```
    x = 0;
    twoToTheX = 1;
    while (twoToTheX < n+1)
        x += 1;
        twoToTheX *= 2;
    return x;
```

The values computed by this procedure for small n and the approximate values of $\lg (n+1)$ are:

n	x	$\lg (n+1)$
0	0	0.0
1	1	1.0
2	2	1.6
3	2	2.0
4	3	2.3
5	3	2.6
6	3	2.8
7	3	3.0
8	4	3.2
9	4	3.3

1.8

$$
\operatorname{Pr}(S \mid T)=\frac{\operatorname{Pr}(S \text { and } T)}{\operatorname{Pr}(T)}=\frac{\operatorname{Pr}(S) \operatorname{Pr}(T)}{\operatorname{Pr}(T)}=\operatorname{Pr}(S)
$$

The second equation is similar.

1.10

We know $A<B$ and $D<C$. By direct counting:

$$
\begin{aligned}
& \operatorname{Pr}(A<C \mid A<B \text { and } D<C)=\frac{\operatorname{Pr}(A<C \text { and } A<B \text { and } D<C)}{\operatorname{Pr}(A<B \text { and } D<C)}=\frac{5 / 24}{6 / 24}=\frac{5}{6} \\
& \operatorname{Pr}(A<D \mid A<B \text { and } D<C)=\frac{\operatorname{Pr}(A<D<C \text { and } A<B)}{\operatorname{Pr}(A<B \text { and } D<C)}=\frac{3 / 24}{6 / 24}=\frac{3}{6}=\frac{1}{2} \\
& \operatorname{Pr}(B<C \mid A<B \text { and } D<C)=\frac{\operatorname{Pr}(A<B<C \text { and } D<C)}{\operatorname{Pr}(A<B \text { and } D<C)}=\frac{3 / 24}{6 / 24}=\frac{3}{6}=\frac{1}{2} \\
& \operatorname{Pr}(B<D \mid A<B \text { and } D<C)=\frac{\operatorname{Pr}(A<B<D<C)}{\operatorname{Pr}(A<B \text { and } D<C)}=\frac{1 / 24}{6 / 24}=\frac{1}{6}
\end{aligned}
$$

1.12

We assume that the probability of each coin being chosen is $1 / 3$, that the probability that it shows "heads" after being flipped is $1 / 2$ and that the probability that it shows "tails" after being flipped is $1 / 2$. Call the coins A, B, and C. Define the elementary events, each having probability $1 / 6$, as follows.

AH A is chosen and flipped and comes out "heads".
$A T \quad A$ is chosen and flipped and comes out "tails".
$B H \quad B$ is chosen and flipped and comes out "heads".
$B T \quad B$ is chosen and flipped and comes out "tails".
CH C is chosen and flipped and comes out "heads".
$C T \quad C$ is chosen and flipped and comes out "tails".
a) BH and CH cause a majority to be "heads", so the probability is $1 / 3$.
b) No event causes a majority to be "heads", so the probability is 0 .
c) $A H, B H, C H$ and $C T$ cause a majority to be "heads", so the probability is $2 / 3$.

1.13

The entry in row i, column j is the probability that D_{i} will beat D_{j}.

$$
\left(\begin{array}{cccc}
- & \frac{22}{36} & \frac{18}{36} & \frac{12}{36} \\
\frac{12}{36} & - & \frac{22}{36} & \frac{16}{36} \\
\frac{18}{36} & \frac{12}{36} & - & \frac{22}{36} \\
\frac{22}{36} & \frac{20}{36} & \frac{12}{36} & -
\end{array}\right)
$$

Note that D_{1} beats D_{2}, D_{2} beats D_{3}, D_{3} beats D_{4}, and D_{4} beats D_{1}.

1.15

The proof is by induction on n, the upper limit of the sum. The base case is $n=0$. Then $\sum_{i=1}^{0} i^{2}=0$, and $\frac{2 n^{3}+3 n^{2}+n}{6}=0$. So the equation holds for the base case. For $n>0$, assume the formula holds for $n-1$.

$$
\begin{aligned}
\sum_{i=1}^{n} i^{2} & =\sum_{i=1}^{n-1} i^{2}+n^{2}=\frac{2(n-1)^{3}+3(n-1)^{2}+n-1}{6}+n^{2} \\
& =\frac{2 n^{3}-6 n^{2}+6 n-2+3 n^{2}-6 n+3+n-1}{6}+n^{2} \\
& =\frac{2 n^{3}-3 n^{2}+n}{6}+\frac{6 n^{2}}{6}=\frac{2 n^{3}+3 n^{2}+n}{6}
\end{aligned}
$$

1.18

Consider any two reals $w<z$. We need to show that $f(w) \leq f(z)$; that is, $f(z)-f(w) \geq 0$. Since $f(x)$ is differentiable, it is continuous. We call upon the Mean Value Theorem (sometimes called the Theorem of the Mean), which can be found in any college calculus text. By this theorem there is some point y, such that $w<y<z$, for which

$$
f^{\prime}(y)=\frac{(f(z)-f(w))}{(z-w)}
$$

By the hypothesis of the lemma, $f^{\prime}(y) \geq 0$. Also, $(z-w)>0$. Therefore, $f(z)-f(w) \geq 0$.

1.20

Let \equiv abbreviate the phrase, "is logically equivalent to". We use the identity $\neg \neg A \equiv A$ as needed.

$$
\begin{array}{rlr}
\neg(\forall x(A(x) \Rightarrow B(x))) & \equiv \exists x \neg(A(x) \Rightarrow B(x)) \quad \text { (by Eq. 1.24) } \\
& \equiv \exists x \neg(\neg A(x) \vee B(x)) \quad \text { (by Eq. 1.21) } \\
& \equiv \exists x(A(x) \wedge \neg B(x)) \quad \text { (by DeMorgan’s law, Eq. 1.23). }
\end{array}
$$

Section 1.4: Analyzing Algorithms and Problems

1.22

The total number of operations in the worst case is $4 n+2$; they are:

$$
\begin{array}{ll}
\text { Comparisons involving } K: & n \\
\text { Comparisons involving index: } & n+1 \\
\text { Additions: } & n \\
\text { Assignments to index: } & n+1
\end{array}
$$

1.23

a)

```
if (a < b)
    if (b < c)
        median = b;
    else if (a < c)
        median = c;
    else
        median = a;
else if (a < c)
    median = a;
else if (b < c)
    median = c;
else
    median = b;
```

