
SOLUTIONS TO CHAPTER 1 PROBLEMS

1. An operating system must provide the users with an extended machine, and it
must manage the I/O devices and other system resources. To some extent,
these are different functions.

2. Obviously, there are a lot of possible answers. Here are some.
Mainframe operating system: Claims processing in an insurance company.
Server operating system: Speech-to-text conversion service for Siri.
Multiprocessor operating system: Video editing and rendering.
Personal computer operating system: Word processing application.
Handheld computer operating system: Context-aware recommendation system.
Embedded operating system: Programming a DVD recorder for recording TV.
Sensor-node operating system: Monitoring temperature in a wilderness area.
Real-time operating system: Air traffic control system.
Smart-card operating system: Electronic payment.

3. In a timesharing system, multiple users can access and perform computations
on a computing system simultaneously using their own terminals. Multipro-
gramming systems allow a user to run multiple programs simultaneously. All
timesharing systems are multiprogramming systems but not all multiprogram-
ming systems are timesharing systems since a multiprogramming system may
run on a PC with only one user.

4. Empirical evidence shows that memory access exhibits the principle of locality
of reference, where if one location is read then the probability of accessing
nearby locations next is very high, particularly the following memory loca-
tions. So, by caching an entire cache line, the probability of a cache hit next is
increased. Also, modern hardware can do a block transfer of 32 or 64 bytes
into a cache line much faster than reading the same data as individual words.

5. The prime reason for multiprogramming is to give the CPU something to do
while waiting for I/O to complete. If there is no DMA, the CPU is fully occu-
pied doing I/O, so there is nothing to be gained (at least in terms of CPU utili-
zation) by multiprogramming. No matter how much I/O a program does, the
CPU will be 100% busy. This of course assumes the major delay is the wait
while data are copied. A CPU could do other work if the I/O were slow for
other reasons (arriving on a serial line, for instance).

6. Access to I/O devices (e.g., a printer) is typically restricted for different users.
Some users may be allowed to print as many pages as they like, some users
may not be allowed to print at all, while some users may be limited to printing
only a certain number of pages. These restrictions are set by system adminis-
trators based on some policies. Such policies need to be enforced so that user-
level programs cannot interfere with them.

o r ght 01 rson duc t on nc ghts s r d

2 PROBLEM SOLUTIONS FOR CHAPTER 1

7. It is still alive. For example, Intel makes Core i3, i5, and i7 CPUs with a varie-
ty of different properties including speed and power consumption. All of these
machines are architecturally compatible. They differ only in price and per-
formance, which is the essence of the family idea.

8. A 25 80 character monochrome text screen requires a 2000-byte buffer. The
1200 900 pixel 24-bit color bitmap requires 3,240,000 bytes. In 1980 these
two options would have cost $10 and $15,820, respectively. For current prices,
check on how much RAM currently costs, probably pennies per MB.

9. Consider fairness and real time. Fairness requires that each process be allo-
cated its resources in a fair way, with no process getting more than its fair
share. On the other hand, real time requires that resources be allocated based
on the times when different processes must complete their execution. A real-
time process may get a disproportionate share of the resources.

10. Most modern CPUs provide two modes of execution: kernel mode and user
mode. The CPU can execute every instruction in its instruction set and use
ev ery feature of the hardware when executing in kernel mode. However, it can
execute only a subset of instructions and use only subset of features when ex-
ecuting in the user mode. Having two modes allows designers to run user pro-
grams in user mode and thus deny them access to critical instructions.

11. Number of heads = 255 GB / (65536*255*512) = 16
Number of platters = 16/2 = 8
The time for a read operation to complete is seek time + rotational latency +
transfer time. The seek time is 11 ms, the rotational latency is 7 ms and the
transfer time is 4 ms, so the average transfer takes 22 msec.

12. Choices (a), (c), and (d) should be restricted to kernel mode.

13. It may take 20, 25 or 30 msec to complete the execution of these programs de-
pending on how the operating system schedules them. If P0 and P1 are sched-
uled on the same CPU and P2 is scheduled on the other CPU, it will take 20
msec. If P0 and P2 are scheduled on the same CPU and P1 is scheduled on the
other CPU, it will take 25 msec. If P1 and P2 are scheduled on the same CPU
and P0 is scheduled on the other CPU, it will take 30 msec. If all three are on
the same CPU, it will take 35 msec.

14. Every nanosecond one instruction emerges from the pipeline. This means the
machine is executing 1 billion instructions per second. It does not matter at all
how many stages the pipeline has. A 10-stage pipeline with 1 nsec per stage
would also execute 1 billion instructions per second. All that matters is how
often a finished instruction pops out the end of the pipeline.

o r ght 01 rson duc t on nc ghts s r d

PROBLEM SOLUTIONS FOR CHAPTER 1 3

15. Av erage access time =
0.95 1 nsec (word is in the cache)
+ 0.05 0.99 10 nsec (word is in RAM, but not in the cache)
+ 0.05 0.01 10,000,000 nsec (word on disk only)
= 5001.445 nsec
= 5.001445 sec

16. Maybe. If the caller gets control back and immediately overwrites the data,
when the write finally occurs, the wrong data will be written. However, if the
driver first copies the data to a private buffer before returning, then the caller
can be allowed to continue immediately. Another possibility is to allow the
caller to continue and give it a signal when the buffer may be reused, but this
is tricky and error prone.

17. A trap instruction switches the execution mode of a CPU from the user mode
to the kernel mode. This instruction allows a user program to invoke functions
in the operating system kernel.

18. The process table is needed to store the state of a process that is currently sus-
pended, either ready or blocked. Modern personal computer systems have
dozens of processes running even when the user is doing nothing and no pro-
grams are open. They are checking for updates, loading email, and many other
things, On a UNIX system, use the ps -a command to see them. On a Windows
system, use the task manager.

19. Mounting a file system makes any files already in the mount-point directory
inaccessible, so mount points are normally empty. Howev er, a system adminis-
trator might want to copy some of the most important files normally located in
the mounted directory to the mount point so they could be found in their nor-
mal path in an emergency when the mounted device was being repaired.

20. can fail if there are no free slots left in the process table (and possibly if
there is no memory or swap space left). can fail if the file name given
does not exist or is not a valid executable file. can fail if the file to be
unlinked does not exist or the calling process does not have the authority to
unlink it.

21. Time multiplexing: CPU, network card, printer, keyboard.
Space multiplexing: memory, disk.
Both: display.

22. If the call fails, for example because fd is incorrect, it can return 1. It can
also fail because the disk is full and it is not possible to write the number of
bytes requested. On a correct termination, it always returns nbytes.

o r ght 01 rson duc t on nc ghts s r d

