19. Which of the following resonance forms would be expected to be the most important contributor for the anionic species?

ANS: A DIF: Easy OBJ: Identify resonance structures

REF: 1.4 MSC: Remembering 21. Which two of the following structures are *equivalent* resonance contributors?

22. Which of the following pairs are *not* related as resonance structures?

ANS: C DIF: Medium RI OBJ: Identify resonance structures M

REF: 1.4 MSC: Analyzing

23. Which of the following pairs are related as resonance structures? All nonzero formal charges are shown.

ANS: B DIF: Medium OBJ: Identify resonance structures

REF: 1.4 MSC: Analyzing

24. Which of the structures shown is *not* related to Structure A as a resonance contributor?

MSC: Applying

25. In the orbital interaction diagram for ground state H₂, how many electrons occupy the antibonding molecular orbital?

a.	0			d.	3
b.	1			e.	4
c.	2				
AN: OBJ	S: J:	A DIF: Construct molecular	Easy orbital diagram	REF:	1.5

26.	How many molecular orbitals are generated from combining one $2p$ orbital on carbon and one $2p$ orbital on oxygen?					
	a. 0 d. 3					
	b. 1 e. 4 c. 2					
	ANS: C DIF: Fasy REF: 1.5					
	OBJ: Apply rules for molecular orbital construction MSC: Applying					
27.	How many antibonding molecular orbitals are generated from combining one $2p$ orbital on nitrogen and one $2p$ orbital on carbon?					
	a. 0 d. 3					
	b. 1 e. 4 c. 2					
	ANS: B DIF: Easy REF: 1.5					
	OBJ: Apply rules for molecular orbital construction MSC: Applying					
28.	 A certain orbital interaction diagram has four bonding molecular orbitals and four antibonding molecular orbitals. How many atomic orbitals were mixed to create all these orbitals? a. 2 b. 4 c. 8 d. 16 e. It cannot be determined from the information given. 					
	ANS:CDIF:EasyREF:1.5OBJ:Apply rules for molecular orbital constructionMSC:Applying					
29.	 Which of the following statements about the molecular orbital diagram for H₂⁻ is <i>false</i>? a. There are two atomic orbitals that mix to produce molecular orbitals. b. There is one bonding molecular orbital. c. There is one antibonding molecular orbital. d. All bonding orbitals are occupied. e. All antibonding orbitals are unoccupied. 					
	ANS: EDIF: MediumREF: 1.5OBJ: Apply rules for molecular orbital constructionMSC: Applying					
30.	Which of the following molecular orbitals is the highest in energy? (All were generated by the mixing of four $2p$ orbitals.)					
	b. $ \underbrace{\bullet \circ \circ \circ}_{\circ \circ \bullet \bullet} $					

d. 000

e. All four orbitals shown are equal in energy.

ANS: CDIF: DifficultREF: 1.5OBJ: Apply rules for molecular orbital constructionMSC: Applying