1. Find the domain of the function.

$$
f(x)=\frac{5}{4 x-1}
$$

2. Determine whether f is even, odd, or neither.
$f(x)=\frac{8 x^{2}}{x^{4}+1}$
3. The graphs of $f(x)$ and $g(x)$ are given.
a) For what values of x is $f(x)=g(x)$?
b) Find the values of $f(-2)$ and $g(4)$.

4. It makes sense that the larger the area of a region, the larger the number of species that inhabit the region. Many ecologists have modeled the species-area relation with a power function and, in particular, the number of species S of bats living in caves in central Mexico has been related to the surface area A measured in m^{2} of the caves by the equation
$S=0.7 A^{03}$
(a) The cave called mission impossible near puebla, mexico, has suface area of $A=90 \mathrm{~m}^{2}$. How many species of bats would expect to find in that cave?
(b) If you discover that 5 species of bats live in cave estimate the area of the cave.
5. Express the function in the form of $f \circ g$.
$v(t)=\sec \left(t^{4}\right) \tan \left(t^{4}\right)$
6. The position of a car is given by the values in the following table.

t (seconds)	0	1	2	3	4	5
s (feet)	0	16	35	71	112	179

Estimate the instantaneous velocity when $t=2$ by averaging the velocities for the periods $[1,2]$ and $[2,3]$.
7. Consider the following function.
$f(x)=\left\{\begin{array}{cc}3-x & x<-1 \\ x & -1 \leq x<3 \\ (x-3)^{2} & x \geq 3\end{array}\right.$
Determine the values of a for which $\lim _{x \rightarrow a} f(x)$ exists.
8. Find the limit.
$\lim _{x \rightarrow 0^{+}} \tan ^{-1}\left(\frac{2}{x}\right)$
9. Evaluate the limit.

$$
\lim _{x \rightarrow 0} \frac{(6+x)^{-1}-6^{-1}}{x}
$$

10. Find the limit.
$\lim _{x \rightarrow \frac{10}{x}} \tan ^{-1}\left(\frac{5}{x}\right)$
11. Evaluate the limit.
$\lim _{x \rightarrow 3}\left(\frac{x^{3}-5}{x^{2}-6}\right)$
12. Evaluate the limit.
$\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{x-9}$
13. Evaluate the limit.
$\lim _{x \rightarrow 0} \frac{3-\sqrt{3-x^{2}}}{x}$
14. Find a number δ such that if $|x-2|<\delta$, then $|4 x-8|<\varepsilon$, where $\varepsilon=0.1$.
15. Find the point at which the given function is discontinuous.
$f(x)= \begin{cases}\frac{1}{x-7}, & x \neq 7 \\ 7, & x=7\end{cases}$
16. Write an equation that expresses the fact that a function f is continuous at the number 4 .
17. Find a function g that agrees with f for $x \neq 25$ and is continuous on 9 .

$$
f(x)=\frac{5-\sqrt{x}}{25-x}
$$

18. Let $f(x)=x^{2}-18 x+75$ and $g(x)=\sqrt{x+7}$. Find $(f \circ g)(74)(g \circ g)(74)$.
19. Find the limit $\lim _{x \rightarrow 0^{+}} \frac{9+\sqrt{x}}{\sqrt{x+16}}$.
20. Find the numbers, if any, where the function $f(x)=\frac{x-3}{x^{2}-9}$ is discontinuous.
